1,103,792 research outputs found

    A high power handling capability CMOS T/R switch for x-band phased array antenna systems

    Get PDF
    This paper presents a single-pole double-throw (SPDT) transmit/receive (T/R) switch fabricated in 0.25-μm SiGe BiCMOS process for X-Band (8 – 12 GHz) phased array radar applications. The switch is based on series-shunt topology with combination of techniques to improve insertion loss (IL), isolation and power handling capability (P1dB). These techniques include optimization of transistor widths for lower insertion loss and parallel resonance technique to improve isolation. In addition, DC biasing of input and output ports, on-chip impedance transformation networks (ITN) and resistive body-floating are used to improve P1dB of the switch. All these design techniques resulted in a measured IL of 3.6 dB, isolation of 30.8 dB and P1dB of 28.2 dBm at 10 GHz. The return losses at both input and output ports are better than 16 dB from 8 to 12 GHz. To our knowledge, this work presents the highest P1dB at X-Band compared to other reported single-ended CMOS T/R switches in the literature

    Amplifier provides dual outputs from a single source with complete isolation

    Get PDF
    Amplifier provides two amplified outputs from a single input signal with complete transformer isolation. It uses modulation techniques to obtain the separated output

    An optimised recovery method for thermophilic Campylobacter from liver

    Get PDF
    BACKGROUND: The past three decades have witnessed the rise of Campylobacter enteritis in man from virtual obscurity to notoriety, with present isolation rates superseding those of other enteric pathogens such as Salmonella spp. and Shigella spp. in most developed countries. Although campylobacters are not completely new to applied bacteriology, they have evaded traditional isolation techniques used for the isolation of pure cultures, apart from single isolations that were free from competing organisms. Offals, in particular liver have been decribed as both a source of campylobacters, as well as a route of transmission of this organism to human. Therefore, the aim of this study was to develop an optimum method for the recovery of Campylobacter spp. from porcine liver. RESULTS: Four isolation techniques (methods A-D) were compared in a small pilot study for their ability to successfully recover campylobacters from freshly eviscerated porcine liver. The optimum isolation method involved direct swabbing of the liver tissues followed by plating onto Preston Selective medium, which was superior to methods involving mechanical disruption to liver tissues, including direct plating and enrichment methods, with and without blood. Consequently, any isolation method that involves disruption of liver tissue e.g. homogenisation or stomaching, is not suitable for the detection of campylobacters from liver and hence it is recommended that employment of a direct swabbing technique without mechanical disruption of tissues in combination with selective plating to optimally recover campylobacters from freshly eviscerated liver. CONCLUSIONS: Employment of a direct swabbing technique in combination with selective plating allow Campylobacter spp. to be optimally recovered from freshly eviscerated liver and therefore this technique is recommended when examining liver for the presence of this organism

    Vibration isolation

    Get PDF
    Viewgraphs on vibration isolation are presented. Techniques to control and isolate centrifuge disturbances were identified. Topics covered include: disturbance sources in the microgravity environment; microgravity assessment criteria; life sciences centrifuge; flight support equipment for launch; active vibration isolation system; active balancing system; and fuzzy logic control

    A robust subspace based approach to feedforward control of broadband disturbances on a six-degrees-of-freedom vibration isolation set-up

    Get PDF
    The contribution of this paper is twofold. First, the paper introduces a novel hybrid vibration isolation approach which uses a combination of passive and active vibration control techniques to provide additional design freedom. The approach can be used to meet higher design requirements with respect to vibration isolation. To illustrate the feasibility of the approach, a stiff hybrid sixdegrees-of-freedom vibration isolation set-up will be presented. The objective of the set-up is to investigate if the receiver structure can be isolated from the source structure by six hybrid vibration isolation mounts, such that disturbances induced by the source structure are isolated from the receiver structure. Vibration isolation is established by minimizing signals from six acceleration sensor outputs and by steering six piezo-electric actuator inputs. Our second contribution is that a state space based fixed gain H2 controller is designed, implemented and validated. Real-time broadband feedforward control results are presented (between 0 - 1 kHz) which show that an average reduction of 8.0 dB is achieved in the error sensor outputs in real-time

    Qualitative model-based diagnostics for rocket systems

    Get PDF
    A diagnostic software package is currently being developed at NASA LeRC that utilizes qualitative model-based reasoning techniques. These techniques can provide diagnostic information about the operational condition of the modeled rocket engine system or subsystem. The diagnostic package combines a qualitative model solver with a constraint suspension algorithm. The constraint suspension algorithm directs the solver's operation to provide valuable fault isolation information about the modeled system. A qualitative model of the Space Shuttle Main Engine's oxidizer supply components was generated. A diagnostic application based on this qualitative model was constructed to process four test cases: three numerical simulations and one actual test firing. The diagnostic tool's fault isolation output compared favorably with the input fault condition

    Detection of cryptosporidium oocysts in water and environmental concentrates

    Get PDF
    Whilst current methods for the isolation and enumeration of Cryptosporidium spp. oocysts in water have provided some insight into their occurrence and significance, they are regarded as being inefficient, variable and time-consuming, with much of the interpretation being left to the expertise of the analyst. Two expectations of novel developments are to reduce the variability and subjectivity associated with the isolation and identification of oocysts. Flocculation, immunomagnetisable and flow cytometric techniques, for concentrating oocysts from water samples, should prove more reliable than current methods, whilst the development of more avid and specific monoclonal antibodies in conjunction with the use of nuclear fluorochromes will aid identification. Further insight into the viability, taxonomy, species identification, infectivity and virulence of the parasite should be forthcoming through the use of techniques such as the polymerase chain reaction, in situ hybridisation and non-uniform alternating current electrical fields. Such information is necessary in order to enable microbiologists, epidemiologists, engineers, utility operators and regulators to assess the safety of a water supply, with respect to Cryptosporidium contamination, more effectively
    corecore