1,150 research outputs found
Marshall Space Flight Center Faculty Fellowship Program
The research projects conducted by the 2016 Faculty Fellows at NASA Marshall Space Flight Center included propulsion studies on propellant issues, and materials investigations involving plasma effects and friction stir welding. Spacecraft Systems research was conducted on wireless systems and 3D printing of avionics. Vehicle Systems studies were performed on controllers and spacecraft instruments. The Science and Technology group investigated additive construction applied to Mars and Lunar regolith, medical uses of 3D printing, and unique instrumentation, while the Test Laboratory measured pressure vessel leakage and crack growth rates
Recommended from our members
Correlating Interlayer Spacing and Separation Capability of Graphene Oxide Membranes in Organic Solvents.
Membranes synthesized by stacking two-dimensional graphene oxide (GO) hold great promise for applications in organic solvent nanofiltration. However, the performance of a layer-stacked GO membrane in organic solvent nanofiltration can be significantly affected by its swelling and interlayer spacing, which have not been systematically characterized. In this study, the interlayer spacing of the layer-stacked GO membrane in different organic solvents was experimentally characterized by liquid-phase ellipsometry. To understand the swelling mechanism, the solubility parameters of GO were experimentally determined and used to mathematically predict the Hansen solubility distance between GO and solvents, which is found to be a good predictor for GO swelling and interlayer spacing. Solvents with a small solubility distance (e.g., dimethylformamide, N-methyl-2-pyrrolidone) tend to cause significant GO swelling, resulting in an interlayer spacing of up to 2.7 nm. Solvents with a solubility distance larger than 9.5 (e.g., ethanol, acetone, hexane, and toluene) only cause minor swelling and are thus able to maintain an interlayer spacing of around 1 nm. Correspondingly, GO membranes in solvents with a large solubility distance exhibit good separation performance, for example, rejection of more than 90% of the small organic dye molecules (e.g., rhodamine B and methylene blue) in ethanol and acetone. Additionally, solvents with a large solubility distance result in a high slip velocity in GO channels and thus high solvent flux through the GO membrane. In summary, the GO membrane performs better in solvents that are unlike GO, i.e., solvents with large solubility distance
NASA Patent Abstracts Bibliography: A Continuing Bibliography
This report lists NASA patent abstracts recently announced in the NASA STI Database
Residual stress and texture control in Ti-6Al-4V wire + arc additively manufactured intersections by stress relief and rolling
Additively manufactured intersections have the theoretical risk to contain hydrostatic tensile residual stresses, which eventually cannot be thermally stress relieved. The stresses in Ti-6Al-4V wire + arc additively manufactured (WAAM) intersections are lower compared to single pass walls and stresses in continuous walls are larger compared to discontinuous walls with otherwise identical geometry. Thermal stress relief was found to virtually eliminate them.
Inter-pass rolling can yield the desired grain refinement, without having any noteworthy influence on the development of residual stresses. The strain measurement itself by neutron diffraction is facilitated by the refined microstructure, because the otherwise textured microstructure produces anisotropic peak intensity, not allowing Pawley refinement. Without rolling, the
{101¯1} and {101¯3}
family of hcp planes are the only ones that diffract consistently in the three principal directions
Numerical modeling of the electron beam welding and its experimental validation
Electron Beam Welding (EBW) is a highly efficient and precise welding method increasingly used within the manufacturing chain and of growing importance in different industrial environments such as the aeronautical and aerospace sectors. This is because, compared to other welding processes, EBW induces lower distortions and residual stresses due to the lower and more focused heat input along the welding line.
This work describes the formulation adopted for the numerical simulation of the EBW process as well as the experimental work carried out to calibrate and validate it.
The numerical simulation of EBW involves the interaction of thermal, mechanical and metallurgical phenomena. For this reason, in this work the numerical framework couples the heat transfer process to the stress analysis to maximize accuracy. An in-house multi-physics FE software is used to deal with the numerical simulation. The definition of an ad hoc moving heat source is proposed to simulate the EB power surface distribution and the corresponding absorption within the work-piece thickness. Both heat conduction and heat radiation models are considered to dissipate the heat through the boundaries of the component. The material behavior is characterized by an apropos thermo-elasto-viscoplastic constitutive model. Titanium-alloy Ti6A14V is the target material of this work.
From the experimental side, the EB welding machine, the vacuum chamber characteristics and the corresponding operative setting are detailed. Finally, the available facilities to record the temperature evolution at different thermo-couple locations as well as to measure both distortions and residual stresses are described. Numerical results are compared with the experimental evidence.Peer ReviewedPostprint (author's final draft
Nanofiller Fibre-Reinforced Polymer Nanocomposites
In this work, the technology of nano and micro-scale particle reinforcement
concerning various polymeric fibre-reinforced systems including polyamides (PA),
polyesters, polyurethanes, polypropylenes and high performance/temperature
engineering polymers such as polyimide (PI), poly(ether ether ketone) (PEEK),
polyarylacetylene (PAA) and poly p-phenylene benzobisoxazole (PBO) is reviewed.
When the diameters of polymer fibre materials are shrunk from micrometers to
submicrons or nanometers, there appear several unique characteristics such as
very large surface area to volume ratio (this ratio for a nanofibre can be as
large as 103 times of that of a microfibre), flexibility in surface
functionalities and superior mechanical performance (such as stiffness and
tensile strength) compared with any other known form of the material. However,
nanoparticle reinforcement of fibre reinforced composites has been shown to be a
possibility, but much work remains to be performed in order to understand how
nanoreinforcement results in dramatic changes in material properties. The
understanding of these phenomena will facilitate their extension to the
reinforcement of more complicated anisotropic structures and advanced polymeric
composite systems
Dissimilar Welding and Joining of Magnesium Alloys: Principles and Application
The growing concerns regarding fuel consumption within the aerospace and transportation industries make the development of fuel-efficient systems a significant engineering challenge. Currently, materials are selected because of their abilities to satisfy engineering demands for good thermal conductivity, strength-to-weight ratio, and tensile strength. These properties make magnesium an excellent option for various industrial or biomedical applications, given that is the lightest structural metal available. The utilization of magnesium alloys, however, requires suitable welding and joining processes that minimizes microstructural changes while maintaining good joint/bond strength. Currently, magnesium are joined using; mechanical fastening, adhesive bonding, brazing, fusion welding processes or diffusion bonding process. Fusion welding is the conventional process used for joining similar metals. However, the application of any welding technique to join dissimilar metals presents additional difficulties, the principal one being; the reaction of the two metals at the joint interface can create intermetallic compounds that may have unfavorable properties and metallurgical disruptions which deteriorates the joint performance. This chapter investigates the welding and joining technologies that are currently used to join magnesium alloys with emphasis on the development of multi-material structures for applications in the biomedical industries. Multi-material structures often provide the most efficient design solution to engineering challenges
Pengaruh Interlayer Elektroplating Zinc pada Kekuatan Mekanik Friction Stir Spot Welding Aa1100-Ss400
Sambungan FSSW dengan material yang berbeda banyak digunakan pada kendaraan. Namun, masalah muncul ketika material tersebut tidak tersambung dengan sempurna. Penggunaan interlayer Zn mampu meningkatkan kemampuan sambungan. Variasi penggunaan dwell time dan diameter shoulder digunakan untuk memperjelas peranan interlayer electroplating Zn. Pengujian tarik geser yang telah dilakukan membuktikan bahwa penggunaan interlayer electroplating Zn memiliki kemampuan sambungan yang lebih baik. Nilai maksimal pengujian tarik geser sebesar 3.8 kN. Nilai maksimal sambungan tanpa interlayer elektroplating Zn 2.5 kN. Pengujian kekerasan menunjukkan nilai yang lebih besar 63 HV dari pada sambungan tanpa menggunakan interlayer elektroplating Zn.
On the role of intermetallic and interlayer in the dissimilar material welding of Ti6Al4V and SS 316L by friction stir welding
Joining titanium with stainless steel can lighten the structure of numerous industrial applications. However, a vast disparity of thermal, physical, and chemical properties between these alloys leads to defects in conventional arc welding techniques, viz., brittle intermetallic compounds, pores, cracks, etc. Friction stir welding (FSW) is a renowned solid-state joining technology for creating dissimilar material joints producing visco-plastic material flow at the interface. The present investigation compares the intermetallic layer thickness and properties as a function of the thickness of the Cu interlayer sandwiched in lap joints. Macrostructural and microstructural characterizations were carried out to understand the localized microstructural evolution comprising intermetallic, grain refinement, defects, etc. Mechanical properties were also evaluated for prepared lap joints
- …
