18,523 research outputs found

    Material Strength in Polymer Shape Deposition Manufacturing

    Get PDF
    Shape Deposition Manufacturing (SDM) is a layered manufacturing process involving an iterative combination of material addition and material removal. Polymer SDM processes have used castable thermoset resins to build a variety of parts. The strength of such parts is determined by the bulk material properties of the part materials and by their interlayer adhesion. This paper describes tensile testing of three thermoset resins used for SDM - two polyurethane resins and one epoxy resin. Both monolithic specimens and specimens with two interlayer !nterfaces were tested. Interlayer tensile strengths were found to vary greatly among the three matenals, from 5-40 MPa.Mechanical Engineerin

    Longitudinal Eigenvibration of Multilayer Colloidal Crystals and the Effect of Nanoscale Contact Bridges

    Full text link
    Longitudinal contact-based vibrations of colloidal crystals with a controlled layer thickness are studied. These crystals consist of 390 nm diameter polystyrene spheres arranged into close packed, ordered lattices with a thickness of one to twelve layers. Using laser ultrasonics, eigenmodes of the crystals that have out-of-plane motion are excited. The particle-substrate and effective interlayer contact stiffnesses in the colloidal crystals are extracted using a discrete, coupled oscillator model. Extracted stiffnesses are correlated with scanning electron microscope images of the contacts and atomic force microscope characterization of the substrate surface topography after removal of the spheres. Solid bridges of nanometric thickness are found to drastically alter the stiffness of the contacts, and their presence is found to be dependent on the self-assembly process. Measurements of the eigenmode quality factors suggest that energy leakage into the substrate plays a role for low frequency modes but is overcome by disorder- or material-induced losses at higher frequencies. These findings help further the understanding of the contact mechanics, and the effects of disorder in three-dimensional micro- and nano-particulate systems, and open new avenues to engineer new types of micro- and nanostructured materials with wave tailoring functionalities via control of the adhesive contact properties

    Linking interlayer twist angle to geometrical parameters of self-assembled folded graphene structures

    Full text link
    Thin adhesive films can be removed from substrates, torn, and folded in distinct geometries under external driving forces. In two-dimensional materials, however, these processes can be self-driven as shown in previous studies on folded twisted bilayer graphene nanoribbons produced by spontaneous tearing and peeling from a substrate. Here, we use atomic force microscopy techniques to generate and characterize the geometrical structure of naturally self-grown folded nanoribbon structures. Measurements of nanoribbon width and interlayer separation reveal similar twist-angle dependences possibly caused by the anisotropy in the bilayer potential. In addition, analysis of the data shows an unexpected correlation between the height of the folded arc edge -parameterized by a radius R-, and the ribbon width, suggestive of a self-growth process driven by a variable cross-sectional shape. These observations are well described by an energy minimization model that includes the bilayer adhesion energy density as represented by a distance dependent Morse potential. We obtain an analytical expression for the radius R versus the ribbon width that predicts a renormalized bending rigidity and stands in good agreement with experimental observations. The newly found relation between these geometrical parameters suggests a mechanism for tailored growth of folded twisted bilayer graphene -- a platform for many intriguing physics phenomena

    Elasticity analysis of sandwich pipes with functionally graded interlayers

    Get PDF
    Acknowledgements Financial support of this research by the Royal Society of Edinburgh and the Italian Academy of Sciences under International Exchanges Bilateral Programme grant is gratefully acknowledged.Peer reviewedPostprin

    Pressure-induced commensurate stacking of graphene on boron nitride

    Full text link
    Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighboring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunneling microscopy tip. For the special case of aligned or nearly-aligned graphene on boron nitride, the graphene lattice can stretch and compress locally to compensate for the slight lattice mismatch between the two materials. We find that modifying the interlayer separation directly tunes the lattice strain and induces commensurate stacking underneath the tip. Our results motivate future studies tailoring the electronic properties of van der Waals heterostructures by controlling the interlayer separation of the entire device using hydrostatic pressure.Comment: 17 pages, 4 figures and supplementary information. Updated to published versio

    Coil Formation in Multishell Carbon Nanotubes: Competition between Curvature Elasticity and Interlayer Adhesion

    Full text link
    To study the shape formation process of carbon nanotubes, a string equation describing the possible existing shapes of the axis-curve of multishell carbon tubes (MCTs) is obtained in the continuum limit by minimizing the shape energy, that is the difference between the MCT energy and the energy of the carbonaceous mesophase (CM). It is shown that there exists a threshold relation of the outmost and inmost radii, that gives a parameter regime in which a straight MCT will be bent or twisted. Among the deformed shapes, the regular coiled MCTs are shown being one of the solutions of the string equation. In particular,the optimal ratio of pitch pp and radius r0r_0 for such a coil is found to be equal to 2π2\pi , which is in good agreement with recent observation of coil formation in MCTs by Zhang et al.Comment: RevTeX, no figure, 12 pages, to appear in Phys. Rev. Let

    Bending-Induced Delamination of van der Waals Solids

    Full text link
    Although sheets of layered van der Waals solids offer great opportunities to custom-design nanomaterial properties, their weak interlayer adhesion challenges structural stability against mechanical deformation. Here, bending-induced delamination of multilayer sheets is investigated by molecular dynamics simulations, using graphene as an archetypal van der Waals solid. Simulations show that delamination of a graphene sheet occurs when its radius of curvature decreases roughly below Rc=5.3nm×(number of layers)3/2R_c=5.3\text{nm}\times (\text{number of layers})^{3/2} and that, as a rule, one-third of the layers get delaminated. These clear results are explained by a general and transparent model, a useful future reference for guiding the design of nanostructured van der Waals solids.Comment: 5 pages, 3 figure
    corecore