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Abstract

Sandwich pipes that combine structural performance with thermal insulation in their

design are viewed as a light-weight alternative to pipe-in-pipe systems, in which the core

material is used only for thermal insulation purposes. Incorporating functionally graded

interlayers into the sandwich pipe design may help improve adhesion at the interfaces

between the core layer and inner and outer pipes which has been identified as one of the

major factors affecting sandwich pipe performance. In this paper, sandwich pipes with

two thin functionally graded interlayers between the core layer and inner/outer pipes
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are investigated in the context of elasticity theory. Closed form analytical solutions are

derived for stresses and displacements in the pipes subjected to internal and/or exter-

nal pressure. Comparative analysis of sandwich pipes with and without functionally

graded interlayers is performed and beneficial effect of graded interlayers on stresses

and displacements in the pipe is established.

Keywords: Functionally Graded Material; elasticity theory; sandwich pipe

1 INTRODUCTION

As oil and gas production move to deepwater and ultra deepwater fields new structural

configurations are required to meet simultaneous demands for thermal insulation and me-

chanical integrity to ensure safe and reliable transportation of hydrocarbons. Since single

walled pipes are not viable in these conditions due to their limited operational depths and

lack of insulation, pipe-in-pipe systems have been developed over the past two decades for

fields with flow assurance challenges (Bai and Bai, 2014).

A typical pipe-in-pipe system consists of an inner pipe positioned inside an outer pipe,

often with the help of centralisers located at certain intervals along the inner pipe. The

annular space between the inner and outer pipe is filled with insulation material to meet

specific thermal requirements. The outer pipe is designed to withstand high external pressure

dictated by the water depth and installation method. More recently, electrically heated

pipe-in-pipe systems have been developed (Denniel, Bonneau and Savy, 2011; Denniel, 2015)

which have the capability to maintain the required temperature of the fluid inside the inner

pipe thus offering enhanced flow assurance.

It should be pointed out that, in the pipe-in-pipe concept, the insulation material does

not perform any structural function, which is performed entirely by the outer and inner

pipes. This means the annular space between the inner pipe and outer pipe is not used to its

full structural potential. With increasing water depths and associated increasing demands on

structural performance, the pipe wall thickness in pipe-in-pipe systems will have to increase
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leading to pipe-in-pipe systems becoming exceedingly heavy and uneconomical.

As a lightweight alternative to pipe-in-pipe systems, a concept of sandwich pipe is being

developed. A sandwich pipe combines thermal insulation and structural performance in its

design and attempts to realise the full structural potential of the annular space between

the inner pipe and outer pipe. A sandwich pipe typically consists of two thin-walled pipes

an inner pipe and an outer pipe and a core layer that completely fills the annular space

between the pipes and is bonded to them. Estefen, Netto and Pasqualino (2005) performed

small-scale tests to evaluate the structural performance of sandwich pipes with two different

options of core material. The obtained experimental results were used to validate a three-

dimensional finite element model that took into account nonlinear geometric and material

behaviour. Strength analysis of sandwich pipes under combined external pressure and lon-

gitudinal bending showed that sandwich pipe systems with either cement or polypropylene

cores are feasible options for ultra deepwater applications.

An analytical approach for estimating the buckling capacity of sandwich pipes with var-

ious structural configurations and core materials, subject to external hydrostatic pressure

was developed by Arjomandi and Taheri (2010). In addition to the exact solution, they

proposed two simplified equations for estimating the buckling capacity of two configurations

commonly used in practice. Arjomandi and Taheri (2011a, b) also performed extensive fi-

nite element modelling of sandwich pipes. They analysed different bonding scenarios at the

interfaces between the core layer and the pipe layers and examined the effect of material

and geometrical nonlinearities on the pipe buckling and post-buckling behaviour. On the

basis of a large number of finite element models, a set of simplified and practical equations

for calculating the external pressure capacity of sandwich pipes was proposed. Behaviour of

sandwich pipe systems under pure bending was studied by Arjomandi and Taheri (2012).

Collapse behaviour of sandwich pipes with strain hardening cementitious composite rein-

forced with polyvinylalcohol (PVA) fibers as a core material was investigated experimentally

and numerically by An et al (2014). A parametric study examined the effects of ovality,

thickness and outer/inner radius ratio on the collapse pressure of these sandwich pipes. Post-
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buckling responses and pressure capacity of sandwich pipes with the solid polypropylene core

was investigated by He et al (2015) using finite element modelling. The degree of the inter-

layer adhesion between the core layer and the surrounding pipes was modelled by the contact

surfaces adopting different maximum shear strength values to allow the relative displacement

between the layers. The effects of inter-layer adhesion interactions, thickness-to-radius ra-

tios, the core thickness, the material parameters, the relative initial ovality directions and

the inelastic anisotropy on the collapse pressure of sandwich pipes were examined.

Adhesion between the core layers and the inner and outer pipes has been identified

as one of the major factors affecting performance of sandwich pipes. Castello and Estefen

(2007) investigated the influence of the inter-layer adhesion between steel and polymer on the

ultimate strength of sandwich pipes under external pressure and longitudinal bending using

finite element modelling. The effect of the reeling method of installation was also simulated.

It was established that the ultimate strength of the sandwich pipe is strongly dependent

on the shear stress acting at the interface between the core and the pipes. Arjomandi and

Taheri (2011a) investigated elastic buckling capacity of bonded and unbonded sandwich

pipes under external hydrostatic pressure and examined the influence of intra-layer adhesion

configuration of the pressure capacity of sandwich pipes. Four bonding configurations were

considered: core fully bonded to both pipes; core fully bonded to the inner pipe but free to

slide against the outer pipe; core fully bonded to the outer pipe but free to slide against the

inner pipe; core unbonded to both pipes. They established that if the core layer is free to slide

against both the inner and outer pipes, the increase in the core modulus of elasticity would

not improve the structural performance of the pipe when subject to external pressure. For

other configurations, however, the increase in the cores modulus of elasticity would increase

the buckling pressure of the system. One potential solution to the adhesion problem in

sandwich pipes is to incorporate the concept of Functionally Graded Material (FGM) into the

sandwich pipe design and introduce functionally graded interlayers between the core and the

inner and outer pipes. Functionally Graded Materials (FGM) are heterogeneous composite

materials with gradient compositional variation of the constituents from one surface of the
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material to the other which results in continuously varying material properties (Suresh and

Mortensen, 1999). Functionally Graded Materials has generated a lot of interest in recent

years, see for example reviews by Birman and Byrd (2007), and Jha, Kant and Singh (2013).

Beneficial effect of functionally graded interlayers on stress and displacement fields has

been already established for coating/substrate systems (Kashtalyan and Menshykova, 2009;

Sburlati et al, 2015), while using thin functionally graded layer was shown to reduce stresses

in hollow pressurized cylinders (Sburlati, 2012) and spherical vessels (Atashipour et al, 2014)

as well as around open holes (Sburlati, 2013).

The benefit of FGM elements in sandwich cylindrical shells has been recently studied also

to investigate vibration and buckling using graded coating (Sofiyev, 2014) or core (Sofiyev

and Kuruoglu, 2015a) or to analyse dynamic instability in sandwich shells with graded

interlayers (Sofiyev and Kuruoglu, 2015b).

In this paper, we examine sandwich pipes with functionally graded interlayers between the

core layer and the inner/outer pipes and analyse the effect of FGM interlayers on response

of sandwich pipes to internal and/or external pressure and their combination. If proven

beneficial, FGM interlayers could be potentially developed for specific combinations of pipe

and core materials and applied as coatings to the internal surface of the outer pipe and

external surface of the inner pipe prior to the annular space being filled with the core material.

2 ANALYTICAL MODELLING

2.1 Problem formulation

Let us consider a sandwich pipe of internal radius a and external radius b, referred to the

cylindrical co-ordinate system, with z−axis directed along the pipe axis. The pipe, cross-

section of which is shown in Fig. 1, consists of five layers: the inner pipe (layer 1) of thickness

hl, the outer pipe (layer 5) of thickness hl, the core layer (layer 3) of thickness 2hc and two

interlayers of the same thickness t, one being the inner interlayer (layer 2) between the inner

pipe and the core layer, and another being the outer interlayer (layer 4) between the core

5

eng679
Cross-Out

eng679
Inserted Text
for

eng679
Cross-Out

eng679
Inserted Text
and also for



layer and the outer pipe. The total thickness of the pipe wall is denoted H = 2(hl + hc + t).

The material of the inner and outer pipes is assumed to be homogeneous isotropic ma-

terial with Young’s modulus El, while the core layer is assumed to be a softer homogeneous

isotropic material with Young’s modulus Ec. We assume the two interlayers to be made of

functionally graded material, with Young’s modulus that varies with the radial co-ordinate

according to the power law. In the inner interlayer (layer 2) this variation has the form

E (r) = El

(
r

a+ hl

)n

. (2.1)

In the outer interlayer (layer 4)

E (r) = El

(
2 a+H − r

a+ hl

)n

, (2.2)

where n is the inhomogeneity parameter

n =

ln

(
Ec

El

)

ln

(
a+ hl + t

a+ hl

) . (2.3)

In this way, the same value of the inhomogeneity parameter can be used to describe the

increase of Young’s modulus in the outer graded interlayer and its decrease in the inner

graded interlayer.

Figure 2 shows variation of Young’s modulus across the wall thickness of this sandwich

pipe for El = 200Ec; Poisson’s ratio for all five layers of the pipe is assumed to be constant

and the same.

We assume that all layers of the pipe are perfectly bonded to each other, with displace-
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ment and stress continuity conditions fulfilled at all interfaces in the form

u(1)(a+ hl) = u(2)(a+ hl)

σ
(1)
r (a+ hl) = σ

(2)
r (a+ hl)

u(2)(a+ hl + t) = u(3)(a+ hl + t)

σ
(2)
r (a+ hl + t) = σ

(3)
r (a+ hl + t)

u(3)(a+ hl + t+ 2hc) = u(4)(a+ hl + t+ 2hc)

σ
(3)
r (a+ hl + t+ 2hc) = σ

(4)
r (a+ hl + t+ 2hc)

u(4)(a+ hl + 2t+ 2hc) = u(5)(a+ hl + 2t+ 2hc)

σ
(4)
r (a+ hl + 2t+ 2hc) = σ

(5)
r (a+ hl + 2t+ 2hc).

(2.4)

The pipe is subjected to a combination of internal and external pressure (Fig. 1)

σ
(1)
r (a) = −pi, σ

(5)
r (b) = −po. (2.5)

2.2 Method of solution

Due to the axial symmetry of the sandwich pipe and applied loading, we can consider elastic-

ity problem as a plane strain one. In this case, the equilibrium equations, strain-displacement

equations and stress-strain relations have the form

d

dr
σr(r) +

σr(r) − σθ(r)

r
= 0, (2.6)

εr(r) =
d

dr
u(r), εθ =

u(r)

r
, (2.7)

σr(r) =
E(r)

(1 + ν)(1 − 2ν)
((1− ν)εr(r) + νεθ) ,

σθ(r) =
E(r)

(1 + ν)(1− 2ν)
((1− ν)εθ(r) + νεr) .

(2.8)

By using the displacement formulation, the above equations can be reduced to Navier equa-

tion

d2

dr2
u (r) +

1

r

d

dr
u (r)− u (r)

r2
+

1

E(r)

d

dr
E (r)

(
d

dr
u (r) +

ν

1− ν

u (r)

r

)
= 0. (2.9)

The specific form of Navier equation for layers 1 to 5 depends on the function that

describes variation of Young’s modulus with the radial co-ordinate within each layer.
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2.3 Functionally graded materials (interlayers 2 and 4)

Substituting (2.1) that describes variation of Young’s modulus with the radial co-ordinate

within interlayer 2 into (2.9), we obtain

d2

dr2
u (r) +

1

r

d

dr
u (r)− u (r)

r2
+

n

r

(
d

dr
u (r) +

ν

1− ν

u (r)

r

)
= 0. (2.10)

Solution of the above equation has the form

u(r) = B1 r
α/2−n/2 +B2 r

−α/2−n/2, (2.11)

where

α =

√
(ν − 1)

(
(n+ 2)

2
ν − n2 − 4

)

ν − 1
.

(2.12)

We remark that, as a consequence of Poissonś ratio constraint 0 < ν < 1/2, the sign of

the term in the square root presents in the definition of (2.12) is always positive.

Substituting (2.11) into strain-displacement relations, (2.7), and then stress-strain rela-

tions, (2.8), the following expressions for radial and hoop stresses in the inner FGM interlayer

are obtained

σr (r) =
rn/2−1+α/2 ((ν − 1)α− (n+ 2) ν + n)El

2 (1 + ν) (2 ν − 1) (a+ hl)n
B1+

−rn/2−1−α/2 ((ν − 1)α+ (n+ 2) ν − n)El

2 (1 + ν) (2 ν − 1) (a+ hl)n
B2,

σθ (r) = −rn/2−1+α/2 (ν α− (n+ 2) ν + 2)El

2 (1 + ν) (2 ν − 1) (a+ hl)n
B1+

+
rn/2−1−α/2 (ν α+ (n+ 2)ν − 2)El

2 (1 + ν) (2 ν − 1) (a+ hl)n
B2.

(2.13)

For the outer FGM interlayer, substituting equation (2.3) that describes variation of

Young’s modulus with the radial co-ordinate within layer 4 into Navier equation, (2.9),

yields

d2

dr2
u (r) +

1

r

d

dr
u (r)− u (r)

r2
− n

2 a+H − r

(
d

dr
u (r) +

ν

1− ν

u (r)

r

)
= 0. (2.14)
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This equation, after a rescaling and a translation, can be rewritten in the standard

hypergeometric form. Its solutions can be found in (Abramowitz, M, Stegun, 1965). As a

consequence of the physical meaning of the parameters involved in Eq.(2.14), we consider

the following solutions:

u (r) = D1rΘ1 (r) +D2 (2 a+H − r)
1−n

rΘ2 (r) , (2.15)

where

Θ1 (r) = 2F1

(
−α

2
+

n

2
+ 1,

α

2
+

n

2
+ 1; n;

2 a+H − r

2 a+H

)
,

Θ2 (r) = 2F1

(
−α

2
− n

2
+ 2,

α

2
− n

2
+ 2; 2− n;

2 a+H − r

2 a+H

)
,

(2.16)

are the hypergeometric functions.

We set also the quantities

Θ3 (r) = 2F1

(
α

2
+

n

2
+ 2,−α

2
+

n

2
+ 2; n+ 1;

2 a+H − r

2 a+H

)
,

Θ4 (r) = 2F1

(
α

2
− n

2
+ 3,−α

2
− n

2
+ 3; 3− n;

2 a+H − r

2 a+H

)
,

(2.17)

to write
d

dr
Θ1 (r) =

(α/2− n/2− 1) (α/2 + n/2 + 1)Θ3 (r)

n (2 a+H)
,

d

dr
Θ2 (r) =

(α/2 + n/2− 2) (α/2− n/2 + 2)Θ4 (r)

(2− n) (2 a+H)
.

(2.18)

Substituting Eqs.(2.7) into and strain-displacement relations, Eq.(2.2b), and then stress-

strain relations, Eqs. (2.2c), the following expressions for radial and hoop stress in the outer
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FGM interlayer (layer 4) are obtained as

σr (r) = − (2 a+H − r)
n
El

(1 + ν) (2 ν − 1) (a+ hl)
n

(
(2 + n− α) (2 + n+ α) (ν − 1) rΘ3 (r)

4n (2 a+H)
+ Θ1 (r)

)
D1+

+
El

(1 + ν) (2 ν − 1) (a+ hl)
n ((n(ν − 1)− ν + 2) r −H − 2 a)Θ2 (r) D2+

+
El

(1 + ν) (2 ν − 1) (a+ hl)
n
(2 a+H − r) (4− n+ α) (4− n− α) (ν − 1) rΘ4 (r)

4 (n− 2) (2 a+H)
D2,

σθ (r) =
(2 a+H − r)

n
El

(1 + ν) (2 ν − 1) (a+ hl)
n

(
(2 + n− α) (2 + n+ α) νrΘ3 (r)

4n (2 a+H)
+ Θ1 (r)

)
D1+

− El

(1 + ν) (2 ν − 1) (a+ hl)
n (((ν (n− 1)− 1) r + 2 a+H)Θ2 (r))D2+

− El

(1 + ν) (2 ν − 1) (a+ hl)
n
(2 a+H − r) (4− n+ α) (4− n− α) ν rΘ4 (r)

4 (n− 2) (2 a+H)
D2.

(2.19)

2.4 Homogeneous material (layers 1, 3 and 5)

For homogeneous layers, Young’s modulus is constant through the layer thickness, and con-

sequently Navier equation is reduced to

d2

dr2
u (r) +

1

r

d

dr
u (r)− u (r)

r2
= 0. (2.20)

For the inner pipe (layer 1), the solution is written as:

u(r) = A1 r +
A2

r2
. (2.21)

For the core layer (layer 3), the solutions is

u(r) = C1 r +
C2

r2
. (2.22)

For the outer pipe (layer 5), the solutions is

u(r) = F1 r +
F2

r2
. (2.23)

The arbitrary constants A1, A2, B1, B2, C1, C2, D1, D2, F1 and F2 are determined from

the continuity conditions at the interfaces between the layers and the boundary conditions

at the inner and outer surfaces of the pipe, (2.5).
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By setting

T = a+ hl + t+ 2hc,

Q = 2 (a+ hl)
2
ν − 2 a (a+ hl)− hl

2,

M = (T − 2 hc)
α/2 − (a+ hl)

α
(T − 2 hc)

−α/2
,

(2.24)

we explicitly write some constants in the form

A2 = − a2 A1

2 ν − 1
+

(1 + ν) pi a
2

El
,

B2 =
QA1

(2 ν − 1) (a+ hl)
−α/2−n/2+1

− (a+ hl)
α
B1 +

(ν + 1) pi a
2

El (a+ hl)
−α/2−n/2+1

,

C2 =
Q (T − 2 hc)

−α/2−n/2+1 A1

(2 ν − 1) (a+ hl)
−α/2−n/2+1

+M (T − 2 hc)
−n/2+1 B1 − (T − 2 hc)

2 C1+

+
(ν + 1) (T − 2 hc)

−α/2−n/2+1
pi a

2

El (a+ hl)
−α/2−n/2+1

,

D2 =
Q (T − 2 hc)

−α/2+n/2
A1

(2 ν − 1) (a+ hl)
−α/2−n/2+1 Θ2 (T )T 2

+
(T − 2 hc)

n/2
MB1

Θ2 (T )T 2
+

+
4hc (T − hc)C1

Θ2 (T ) (T − 2 hc)
−n+1

T 2
− Θ1 (T )D1

Θ2 (T ) (T − 2 hc)
−n+1 +

(ν + 1) (T − 2 hc)
−α/2+n/2

pi a
2

El (a+ hl)
−α/2−n/2+1

Θ2 (T )T 2
,

F2 = − (a+H)
2
F1

2 ν − 1
+

(ν + 1) (a+H)
2
po

El
.

(2.25)

The remaining constants A1, B1, C1, D1 and F1 are obtained by solving the following

system

c11A1 + c12B1 + c10 = 0

c21A1 + c22B1 + c23C1 + c20 = 0

c31A1 + c32B1 + c33C1 + c34D1 + c30 = 0

c41A1 + c42B1 + c43C1 + c44D1 + c40 = 0

c51A1 + c52B1 + c53C1 + c54D1 + c55F1 + c50 = 0

(2.26)

where the coefficients cij are written in the Appendix.
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2.5 Sandwich pipe without FGM interlayers

As a reference case for comparison purposes, sandwich pipe without FGM interlayers will

be considered. Solution for the reference case can be obtained from the solution presented

above if both interlayers (layers 2 and 4) are assumed to be homogeneous isotropic materials

with the same properties as the core (layer 3).

3 NUMERICAL RESULTS AND DISCUSSION

In this section, we consider a sandwich pipe, in which the inner and outer pipes are made

of steel with Young’s modulus of 200GPa, while the core material is taken to be a polymer

with Young’s modulus of 1GPa. Poisson’s ratio is assumed to be equal to 0.3 for all layers.

Geometrical parameters of the pipe are taken as follows: internal radius a = 0.1m, outer

radius b = 0.15m, wall thickness of the inner and outer pipes hl = 0.005m, interlayer thick-

ness t = 0.005m, core thickness 0.03m. For this configuration, the inhomogeneity parameter

in the power law for Young’s modulus , Eq. (2.3) is equal to n = −113.89.

Figures 3, 4 and 5 show variation of respectively radial displacement, radial stress and

hoop stress through the wall thickness of the sandwich pipe. The pipe is subjected to internal

pressure of 10MPa or external pressure of 15MPa. The results for the sandwich pipe with

FGM interlayers are plotted with solid lines while results for the reference sandwich pipe

without FGM interlayers are plotted with dashed lines.

In sandwich pipes with FGM interlayers, reduction of radial displacement compared to

the reference pipe is observed both under internal and external pressure (Fig. 3). The

biggest reduction occurs in the pipes to which the pressure is applied, i.e. in the inner pipe

in the case of internal pressure and in the outer pipe in the case of external pressure. The

reduction is constant through the core.

The magnitude of radial stress in the vicinity of core/inner pipe and core/outer pipe

interfaces is slightly increased by absolute magnitude if FGM interlayers are present (Fig.

4). This effect is more pronounced at the interface which is closest to the surface of pressure
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application.

The most significant effect of FGM interlayers is observed in the variation of hoop stress

(Fig. 5). In sandwich pipes with FGM interlayers, hoop stress discontinuity is eliminated

compared to the reference sandwich pipe without FGM interlayers. Significant reduction of

hoop stress is observed in the pipe to which pressure is applied (inner pipe in the case of

internal pressure, outer pipe in the case of external pressure).

Variation of radial displacement, radial stress and hoop stress through the wall thickness

of the sandwich pipe subjected to a combination of internal and external pressure is shown

in Fig. 6, 7 and 8. The ratio of external-to-internal pressure is denoted as eta and taken as

0.5; 1; 2; 3 (pi = 1MPa). Using formulae provided in Arjomandi K, Taheri F (2011), it was

established that in this pressure range, the pipe wall remains in the linear elastic region and

does not collapse.

It can be seen from Fig. 6 and 8 that the benefit of using FGM interlayers is increasing

with the increasing external-to-internal pressure ratio (η). The biggest reduction of radial

displacement and hoop stress in the outer pipe is observed for η = 3.

4 CONCLUSION

In this paper, sandwich pipes incorporating two FGM interlayers between the core layer and

inner/outer pipes have been analysed in the framework of plane strain axisymmetric elasticity

problem. Closed-form analytical solutions were derived for such pipes subjected to internal

and/or external pressure. Comparative analysis of stress and displacement fields in sandwich

pipes with and without FGM interlayers revealed beneficial effect of FGM interlayers on pipe

response. It was established that under external pressure FGM interlayers contribute to

significant reduction of hoop stress in the outer pipe. This effect becomes more pronounced

as the external-to-internal pressure ratio increases.
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6 Appendix

The coefficients of the system (2.24) are:

c10 =
(ν − 1) (α+ n− 2) pi a

2

2 (a+ hl)
2
(2 ν − 1)

,

c11 = −El (ν − 1)
(−hl (hl + 2 a) (2 ν − 1)− 2 a2 (ν − 1)

)
α

2 (a+ hl)
2
(2 ν − 1)

2
(ν + 1)

+

−El (ν − 1)
((
(1− 2 ν)hl (hl + 2 a)− 2 a2 (ν − 1)

)
n+ 2 (1− 2 ν)hl (hl + 2 a)− 4 a2ν

)
2 (a+ hl)

2 (2 ν − 1)2 (ν + 1)
,

c12 = −El (a+ hl)
α/2−n/2−1

(ν − 1)α

(1 + ν) (2 ν − 1)
,

c20 =

(
(T − 2 hc)

n El ((1− ν)α− (2 + n) ν + n) (a+ hl)
−n + 2Ec (2 ν − 1)

)
pi a

2

2El (2 ν − 1) (T − 2 hc)
α/2+n/2+1

(a+ hl)
−α/2−n/2+1
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c21 = − El (ν − 1) (a+ hl)
α/2−n/2−1

Qα

2 (2 ν − 1)
2
(ν + 1) (T − 2 hc)

α/2−n/2+1
+

+

(
− (T − 2 hc)

n
El ((n+ 2) ν − n) (a+ hl)

−n
+ 2Ec (2 ν − 1)

)
Q

2 (2 ν − 1)
2
(ν + 1) (T − 2 hc)

α/2+n/2+1
(a+ hl)

−α/2−n/2+1
,

c22 =
El (T − 2 hc)

α/2+n/2−1
((ν − 1)α− (n+ 2) ν + n)

2 (a+ hl)
n (ν + 1) (2 ν − 1)

− Ec (T − 2 hc)
−n/2−1

M

(ν + 1)

+
El (T − 2 hc)

−α/2+n/2−1 ((ν − 1)α+ (n+ 2) ν − n)

2 (ν + 1) (2 ν − 1) (a+ hl)
−α+n ,

c23 =
2Ec (1− ν)

(ν + 1) (2 ν − 1)
,

c30 = −Ec (T − 2 hc)
−α/2−n/2+1

pi a
2

T 2El (a+ hl)
−α/2−n/2+1

− (((ν − 1)n− ν) T + 2 hc) (T − 2 hc)
−α/2+n/2

pi a
2

(2 ν − 1)T 2 (a+ hl)
−α/2+n/2+1

+

+
(ν − 1) (−α− 4 + n) (−α+ 4− n)Θ4 (T )a

2 (T − 2 hc)
−α/2+n/2+1

pi

8 (2 ν − 1)T (n− 2) (T − hc)Θ2 (T ) (a+ hl)
−α/2+n/2+1

,

c31 = − EcQ (T − 2 hc)
−α/2−n/2+1

(2 ν − 1) (ν + 1)T 2 (a+ hl)
−α/2−n/2+1

+

−El ((n− 1)Tν − Tn+ 2 hc)Q (T − 2 hc)
−α/2+n/2

(2 ν − 1)
2
T 2 (ν + 1) (a+ hl)

−α/2+n/2+1
+

+
El (−1 + ν) (−α− 4 + n) (−α+ 4− n)Θ4 (T )Q

8T (n− 2) (T − hc) (2 ν − 1)
2
(ν + 1)Θ2 (T ) (T − 2 hc)

α/2−n/2−1
(a+ hl)

−α/2+n/2+1
,

c32 = −EcM (T − 2 hc)
−n/2+1

(ν + 1)T 2
− El M (((ν − 1)n− ν) T + 2 hc)

(2 ν − 1) (ν + 1)T 2 (T − 2 hc)
−n/2

(a+ hl)
n
+

+
El (ν − 1) (α+ 4− n) (α− 4 + n)Θ4 (T )M

8 (a+ hl)
n
T (n− 2) (T − hc) (ν + 1) (2 ν − 1)Θ2 (T ) (T − 2 hc)

−1−n/2
,

c33 =
Ec (T − 2 hc)

2

(ν + 1)T 2
− Ec

(ν + 1) (2 ν − 1)
+

−4El (((n− 1) ν − n)T + 2 hc)hc (T − hc) (a+ hl)
−n

(T − 2 hc)
−n+1

T 2 (ν + 1) (2 ν − 1)
+

+
El (ν − 1) (−α− 4 + n) (−α+ 4− n)Θ4 (T )hc (a+ hl)

−n

2T (n− 2) (T − 2 hc)
−n (ν + 1) (2 ν − 1)Θ2 (T )

,
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c34 =

El T (ν − 1)Θ1 (T )

(
n− 1− (T − 2 hc) (−α− 4 + n) (−α+ 4− n)Θ4 (T )

8 (n− 2) (T − hc)Θ2 (T )

)

(ν + 1) (2 ν − 1) (a+ hl)
n
(T − 2 hc)

−n+1 +

− (T − 2 hc)
n
El (−α+ 2+ n) (−α− 2− n)T (ν − 1)Θ3 (T )

8 (T − hc)n (ν + 1) (2 ν − 1) (a+ hl)
n ,

c40 =
(ν + 1)a2 (T − 2 hc)

−α/2+n/2
Θ2 (T + t) (T + t) pi

ElΘ2 (T )T 2 (a+ hl)
n/2−α/2

− (T + t+ hl)
2
(ν + 1) po

(T + t)El,

c41 =
Q (T − 2 hc)

−α/2+n/2
Θ2 (T + t) (T + t)

(2 ν − 1)Θ2 (T )T 2 (a+ hl)
n/2−α/2

, c42 =
(T + t)Θ2 (T + t) (T − 2 hc)

n/2
M

T 2Θ2 (T ) (a+ hl)
n−1 ,

c43 =
4 hc (T − hc)Θ2 (T + t) (T + t)

Θ2 (T ) (T − 2 hc)
−n+1

T 2 (a+ hl)
n−1

c44 = − Θ2 (T + t) (T + t)Θ1 (T )

Θ2 (T ) (T − 2 hc)
−n+1 (a+ hl)

n−1 + (T + t)Θ1 (T + t)

c45 = −T − t+
(T + t+ hl)

2

(2 ν − 1) (T + t)
,

c50 =
(((ν − 1)n− ν) (a+ hl) + 2 (ν − 1) (n− 1) (hc + t))Θ2 (T + t) pi a

2

(2 ν − 1)Θ2 (T )T 2 (T − 2 hc)
α/2−n/2 (a+ hl)

n/2+1−α/2
+

+
(T + t) (ν − 1) (a+ hl) (α+ 4− n) (−α+ 4− n)Θ4 (T + t) (T − 2 hc)

−α/2+n/2
pi a

2

8 (2 ν − 1) (n− 2) (T − hc)Θ2 (T )T 2 (a+ hl)
−α/2+n/2+1

+

+
((T + t+ hl))

2
po

(T + t)
2 ,

c51 =
El ((T + t) ((n− 1) ν − n) + 2 t+ 2 hc)QΘ2 (T + t)

(2 ν − 1)
2
Θ2 (T )T 2 (ν + 1) (T − 2 hc)

α/2−n/2
(a+ hl)

−α/2+n/2+1
+

+
El (T + t) (ν − 1) (a+ hl) (α+ 4− n) (−α+ 4− n)QΘ4 (T + t)

8 (n− 2) (T − hc) (2 ν − 1)
2
Θ2 (T )T 2 (ν + 1) (T − 2 hc)

α/2−n/2
(a+ hl)

−α/2+n/2+1
,

c52 =
El (((ν − 1)n− ν)T + (ν − 1)n t+ (2 − ν)t+ 2 hc)MΘ2 (T + t)

Θ2 (T )T 2 (ν + 1) (2 ν − 1) (T − 2 hc)
−n/2

(a+ hl)
n

+

+
El (T + t) (ν − 1) (a+ hl) (α+ 4− n) (−α+ 4− n)MΘ4 (T + t)

8 (n− 2) (T − hc)Θ2 (T )T 2 (ν + 1) (2 ν − 1) (T − 2 hc)
−n/2

(a+ hl)
n
,
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c53 = − El P (T − 2 hc)
n−1 (a+ hl)

−n Θ2 (T + t)

((T + t) (n(ν − 1)− ν) + 2 (t+ hc))
−1

Θ2 (T )T 2 (ν + 1) (2 ν − 1)
+

+
El P

(
α2 − (4− n)2

)
(T + t) (ν − 1) (T − 2 hc)

n−1
(a+ hl)

1−n
Θ4 (T + t)

8 (n− 2) (T − hc)Θ2 (T )T 2 (ν + 1) (2 ν − 1)
,

c54 = −El (n(ν − 1)− ν) ((T + t) + 2 (t+ hc)) Θ1 (T )Θ2 (T + t)

(ν + 1) (2 ν − 1)Θ2 (T ) (a+ hl)
n +

+
El (T + t) (ν − 1) (a+ hl)

(
α2 − (4− n)2

)
Θ4 (T + t)Θ1 (T )

8 (n− 2) (T − hc) (T − 2 hc)
−n+1

(ν + 1) (2 ν − 1)Θ2 (T ) (a+ hl)
n+

− ElΘ1 (T + t)

(ν + 1) (2 ν − 1)
+

El

(
α2 − (2 + n)2

)
(T + t) (ν − 1)Θ3 (T + t)

8 (T − hc)n (ν + 1) (2 ν − 1)
,

c55 = − Elhl (2T + 2 t+ hl)

(ν + 1) (T + t)
2
(2 ν − 1)

,

where we have set

P =
(
(T − 2 hc)T − a2 − 2 (t+ 3 hc + hl) a− 4 hc

2 − 6 (t+ hl) hc − (t+ hl)
2
)
.
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Figure 1. Sketch of the mathematical problem studied

Figure 2. Young’s modulus in the five layers of the pipe wall (three homogeneous layers

and two FGM interlayers)

Figure 3. Radial displacement in the sandwich pipe wall with and without FGM inter-

layers

Figure 4. Radial stress in the sandwich pipe wall with and without FGM interlayers

Figure 5. Hoop stress in the sandwich pipe wall with and without FGM interlayers

Figure 6. Radial displacement for different ratio η

Figure 7. Radial stress for different ratio η

Figure 8. Hoop stress for different ratio η
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Figure 1: Sketch of the mathematical problem studied
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Figure 2: Young’s modulus in the five layers of the pipe wall (three homogeneous

layers and two FGM interlayers)
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Figure 3: Radial displacement in the pipe with and without FGM interlayers
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Figure 4: Radial stress in the pipe with and without FGM interlayers
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Figure 5: Hoop stress in the sandwich pipe wall with and without FGM interlayers

25



Figure 6: Radial displacement for different ratio η
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Figure 7: Radial stress for different ratio η
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Figure 8: Hoop stress for different ratio η
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