625,823 research outputs found

    Interference detection in gaussian noise

    Full text link
    Interference detection in gaussian noise is proposed. It can be applied for easy detection and editing of interference lines in radio spectral line observations. One need not know the position of occurence or keep track of interference in the band. Results obtained on real data have been displayed.Comment: 10 pages, 11 figure

    Pseudo-Lattice Treatment for Subspace Aligned Interference Signals

    Full text link
    For multi-input multi-output (MIMO) K-user interference networks, we propose the use of a channel transformation technique for joint detection of the useful and interference signals in an interference alignment scenario. We coin our detection technique as "pseudo-lattice treatment" and show that applying our technique, we can alleviate limitations facing Lattice Interference Alignment (L-IA). We show that for a 3-user interference network, two of the users can have their interference aligned in lattice structure through precoding. For the remaining user, performance gains in decoding subspace interference aligned signals at the receiver are achieved using our channel transformation technique. Our "pseudo-lattice" technique can also be applied at all users in case of Subspace Interference Alignment (S-IA). We investigate different solutions for applying channel transformation at the third receiver and evaluate performance for these techniques. Simulations are conducted to show the performance gain in using our pseudo-lattice method over other decoding techniques using different modulation schemes

    Quantum diffraction and interference of spatially correlated photon pairs generated by spontaneous parametric down-conversion

    Full text link
    We demonstrate one- and two-photon diffraction and interference experiments utilizing parametric down-converted photon pairs (biphotons) and a transmission grating. With two-photon detection, the biphoton exhibits a diffraction-interference pattern equivalent to that of an effective single particle that is associated with half the wavelength of the constituent photons. With one-photon detection, however no diffraction-interference pattern is observed. We show that these phenomena originate from the spatial quantum correlation between the down-converted photons.Comment: 4 pages, 5 figure

    Self-mixing interference effects in tunable diode laser absorption spectroscopy

    Get PDF
    We report the effects of self-mixing interference on gas detection using tunable diode laser spectroscopy. For very weak feedback, the laser diode output intensity gains a sinusoidal modulation analogous to that caused by low finesse etalons in the optical path. Our experiments show that self-mixing interference can arise from both specular reflections (e.g. cell windows) and diffuse reflections (e.g. Spectralon™ and retroreflective tape), potentially in a wider range of circumstances than etalon-induced interference. The form and magnitude of the modulation is shown to agree with theory. We have quantified the effect of these spurious signals on methane detection using wavelength modulation spectroscopy and discuss the implications for real gas detecto

    Two-photon interference with continuous-wave multi-mode coherent light

    Full text link
    We report two-photon interference with continuous-wave multi-mode coherent light. We show that the two-photon interference, in terms of the detection time difference, reveals two-photon beating fringes with the visibility V=0.5V = 0.5. While scanning the optical delay of the interferometer, Hong-Ou-Mandel dips or peaks are measured depending on the chosen detection time difference. The HOM dips/peaks are repeated when the optical delay and the first-order coherence revival period of the multi-mode coherent light are the same.Comment: 9 pages, 5 figure

    Charge Detection in a Closed-Loop Aharonov-Bohm Interferometer

    Get PDF
    We report on a study of complementarity in a two-terminal "closed-loop" Aharonov-Bohm interferometer. In this interferometer, the simple picture of two-path interference cannot be applied. We introduce a nearby quantum point contact to detect the electron in a quantum dot inserted in the interferometer. We found that charge detection reduces but does not completely suppress the interference even in the limit of perfect detection. We attribute this phenomenon to the unique nature of the closed-loop interferometer. That is, the closed-loop interferometer cannot be simply regarded as a two-path interferometer because of multiple reflections of electrons. As a result, there exist indistinguishable paths of the electron in the interferometer and the interference survives even in the limit of perfect charge detection. This implies that charge detection is not equivalent to path detection in a closed-loop interferometer. We also discuss the phase rigidity of the transmission probability for a two-terminal conductor in the presence of a detector.Comment: 4 pages with 4 figure

    Frequency-Domain Turbo Equalisation in Coded SC-FDMA Systems: EXIT Chart Analysis and Performance

    No full text
    In this paper, we investigate the achievable performance of channel coded single-carrier frequency division multiple-access (SC-FDMA) systems employing various detection schemes, when communicating over frequency-selective fading channels. Specifically, three types of minimum mean-square error (MMSE) based frequency-domain (FD) turbo equalisers are considered. The first one is the turbo FD linear equaliser (LE). The second one is a parallel interference cancellation (PIC)-assisted turbo FD decision-feedback equaliser (DFE). The final one is the proposed hybrid interference cancellation (HIC)-aided turboFD-DFE, which combines successive interference cancellation (SIC) with iterative PIC and decoding. The benefit of interference cancellation (IC) is analysed with the EXtrinsic Information Transfer (EXIT) charts. The performance of the coded SC-FDMA systems employing the above-mentioned detection schemes is investigated with the aid of simulations. Our studies show that the IC techniques achieve an attractive performance at a moderate complexity

    Simulated performance of an order statistic threshold strategy for detection of narrowband signals

    Get PDF
    The application of order statistics to signal detection is becoming an increasingly active area of research. This is due to the inherent robustness of rank estimators in the presence of large outliers that would significantly degrade more conventional mean-level-based detection systems. A detection strategy is presented in which the threshold estimate is obtained using order statistics. The performance of this algorithm in the presence of simulated interference and broadband noise is evaluated. In this way, the robustness of the proposed strategy in the presence of the interference can be fully assessed as a function of the interference, noise, and detector parameters

    A New Outer Bound and the Noisy-Interference Sum-Rate Capacity for Gaussian Interference Channels

    Full text link
    A new outer bound on the capacity region of Gaussian interference channels is developed. The bound combines and improves existing genie-aided methods and is shown to give the sum-rate capacity for noisy interference as defined in this paper. Specifically, it is shown that if the channel coefficients and power constraints satisfy a simple condition then single-user detection at each receiver is sum-rate optimal, i.e., treating the interference as noise incurs no loss in performance. This is the first concrete (finite signal-to-noise ratio) capacity result for the Gaussian interference channel with weak to moderate interference. Furthermore, for certain mixed (weak and strong) interference scenarios, the new outer bounds give a corner point of the capacity region.Comment: 20 pages, 8 figures, submitted to IEEE Trans. Inform. Theory
    corecore