10,574 research outputs found
Effect of Finite Mass on Primordial Nucleosynthesis
We have calculated the small effect of finite nucleon mass on the
weak-interaction rates that interconvert protons and neutrons in the early
Universe. We have modified the standard code for primordial nucleosynthesis to
include these corrections and find a small, systematic increase in the 4He
yield, , depending slightly on the
baryon-to-photon ratio. The fractional changes in the abundances of the other
light elements are a few percent or less for interesting values of the
baryon-to-photon ratio.Comment: 15 pages, 8 figures, uses psfig.st
Local unitary equivalence of multipartite pure states
Necessary and sufficient conditions for the equivalence of arbitrary n-qubit
pure quantum states under Local Unitary (LU) operations are derived. First, an
easily computable standard form for multipartite states is introduced. Two
generic states are shown to be LU-equivalent iff their standard forms coincide.
The LU-equivalence problem for non--generic states is solved by presenting a
systematic method to determine the LU operators (if they exist) which
interconvert the two states.Comment: 5 page
Effect of Neutrino Heating on Primordial Nucleosynthesis
We have modified the standard code for primordial nucleosynthesis to include
the effect of the slight heating of neutrinos by annihilations. There
is a small, systematic change in the He yield, , which is insensitive to the value of the baryon-to-photon ratio
for 10^{-10}\la \eta \la 10^{-9}. We also find that the
baryon-to-photon ratio decreases by about 0.5\% less than the canonical factor
of 4/11 because some of the entropy in pairs is transferred to
neutrinos. These results are in accord with recent analytical estimates.Comment: 14 pages/4 Figs (upon request
Quantum information processing using Josephson junctions coupled through cavities
Josephson junctions have been shown to be a promising solid-state system for
implementation of quantum computation. The significant two-qubit gates are
generally realized by the capacitive coupling between the nearest neighbour
qubits. We propose an effective Hamiltonian to describe charge qubits coupled
through the cavity. We find that nontrivial two-qubit gates may be achieved by
this coupling. The ability to interconvert localized charge qubits and flying
qubits in the proposed scheme implies that quantum network can be constructed
using this large scalable solid-state system.Comment: 5 pages, to appear in Phys Rev A; typos corrected, solutions in last
eqs. correcte
- …
