187,883 research outputs found

    Correlations in a band insulator

    Full text link
    We study a model of a covalent band insulator with on-site Coulomb repulsion at half-filling using dynamical mean-field theory. Upon increasing the interaction strength the system undergoes a discontinuous transition from a correlated band insulator to a Mott insulator with hysteretic behavior at low temperatures. Increasing the temperature in the band insulator close to the insulator-insulator transition we find a crossover to a Mott insulator at elevated temperatures. Remarkably, correlations decrease the energy gap in the correlated band insulator. The gap renormalization can be traced to the low-frequency behavior of the self-energy, analogously to the quasiparticle renormalization in a Fermi liquid. While the uncorrelated band insulator is characterized by a single gap for both charge and spin excitations, the spin gap is smaller than the charge gap in the correlated system.Comment: 7 pages, 7 figure

    Dirac-Electrons-Mediated Magnetic Proximity Effect in Topological Insulator / Magnetic Insulator Heterostructures

    Full text link
    The possible realization of dissipationless chiral edge current in a topological insulator / magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. Here we report a polarized neutron reflectometry observation of Dirac electrons mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi0.2_{0.2}Sb0.8_{0.8})2_{2}Te3_{3} / magnetic insulator EuS heterostructure. We are able to maximize the proximity induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the charge neutral point. A phenomenological model based on diamagnetic screening is developed to explain the suppressed proximity induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator hetero-interface for low-power spintronic applications.Comment: 5 pages main text with 4 figures; 2 pages supplemental materials; suggestions and discussions are welcome

    The Quantized Hall Insulator: A New Insulator in Two-Dimensions

    Full text link
    Quite generally, an insulator is theoretically defined by a vanishing conductivity tensor at the absolute zero of temperature. In classical insulators, such as band insulators, vanishing conductivities lead to diverging resistivities. In other insulators, in particular when a high magnetic field (B) is added, it is possible that while the magneto-resistance diverges, the Hall resistance remains finite, which is known as a Hall insulator. In this letter we demonstrate experimentally the existence of another, more exotic, insulator. This insulator, which terminates the quantum Hall effect series in a two-dimensional electron system, is characterized by a Hall resistance which is approximately quantized in the quantum unit of resistance h/e^2. This insulator is termed a quantized Hall insulator. In addition we show that for the same sample, the insulating state preceding the QHE series, at low-B, is of the HI kind.Comment: 4 page

    Quasi-Topological Insulator and Trigonal Warping in Gated Bilayer Silicene

    Full text link
    Bilayer silicene has richer physical properties than bilayer graphene due to its buckled structure together with its trigonal symmetric structure. The buckled structure arises from a large ionic radius of silicon, and the trigonal symmetry from a particular way of hopping between two silicenes. It is a topologically trivial insulator since it carries a trivial Z2\mathbb{Z}_{2} topological charge. Nevertheless, its physical properties are more akin to those of a topological insulator than those of a band insulator. Indeed, a bilayer silicene nanoribbon has edge modes which are almost gapless and helical. We may call it a quasi-topological insulator. An important observation is that the band structure is controllable by applying the electric field to a bilayer silicene sheet. We investigate the energy spectrum of bilayer silicene under electric field. Just as monolayer silicene undergoes a phase transition from a topological insulator to a band insulator at a certain electric field, bilayer silicene makes a transition from a quasi-topological insulator to a band insulator beyond a certain critical field. Bilayer silicene is a metal while monolayer silicene is a semimetal at the critical field. Furthermore we find that there are several critical electric fields where the gap closes due to the trigonal warping effect in bilayer silicene.Comment: 8 pages, 11 figures, to be published in J. Phys. Soc. Jp

    Dynamical mean-field theory of Hubbard-Holstein model at half-filling: Zero temperature metal-insulator and insulator-insulator transitions

    Full text link
    We study the Hubbard-Holstein model, which includes both the electron-electron and electron-phonon interactions characterized by UU and gg, respectively, employing the dynamical mean-field theory combined with Wilson's numerical renormalization group technique. A zero temperature phase diagram of metal-insulator and insulator-insulator transitions at half-filling is mapped out which exhibits the interplay between UU and gg. As UU (gg) is increased, a metal to Mott-Hubbard insulator (bipolaron insulator) transition occurs, and the two insulating states are distinct and can not be adiabatically connected. The nature of and transitions between the three states are discussed.Comment: 5 pages, 4 figures. Submitted to Physical Review Letter
    corecore