247,681 research outputs found

    Dirac-Electrons-Mediated Magnetic Proximity Effect in Topological Insulator / Magnetic Insulator Heterostructures

    Full text link
    The possible realization of dissipationless chiral edge current in a topological insulator / magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. Here we report a polarized neutron reflectometry observation of Dirac electrons mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi0.2_{0.2}Sb0.8_{0.8})2_{2}Te3_{3} / magnetic insulator EuS heterostructure. We are able to maximize the proximity induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the charge neutral point. A phenomenological model based on diamagnetic screening is developed to explain the suppressed proximity induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator hetero-interface for low-power spintronic applications.Comment: 5 pages main text with 4 figures; 2 pages supplemental materials; suggestions and discussions are welcome

    Competition of crystal field splitting and Hund's rule coupling in two-orbital magnetic metal-insulator transitions

    Full text link
    Competition of crystal field splitting and Hund's rule coupling in magnetic metal-insulator transitions of half-filled two-orbital Hubbard model is investigated by multi-orbital slave-boson mean field theory. We show that with the increase of Coulomb correlation, the system firstly transits from a paramagnetic (PM) metal to a {\it N\'{e}el} antiferromagnetic (AFM) Mott insulator, or a nonmagnetic orbital insulator, depending on the competition of crystal field splitting and the Hund's rule coupling. The different AFM Mott insulator, PM metal and orbital insulating phase are none, partially and fully orbital polarized, respectively. For a small JHJ_{H} and a finite crystal field, the orbital insulator is robust. Although the system is nonmagnetic, the phase boundary of the orbital insulator transition obviously shifts to the small UU regime after the magnetic correlations is taken into account. These results demonstrate that large crystal field splitting favors the formation of the orbital insulating phase, while large Hund's rule coupling tends to destroy it, driving the low-spin to high-spin transition.Comment: 4 pages, 4 figure

    Dynamical mean-field theory of Hubbard-Holstein model at half-filling: Zero temperature metal-insulator and insulator-insulator transitions

    Full text link
    We study the Hubbard-Holstein model, which includes both the electron-electron and electron-phonon interactions characterized by UU and gg, respectively, employing the dynamical mean-field theory combined with Wilson's numerical renormalization group technique. A zero temperature phase diagram of metal-insulator and insulator-insulator transitions at half-filling is mapped out which exhibits the interplay between UU and gg. As UU (gg) is increased, a metal to Mott-Hubbard insulator (bipolaron insulator) transition occurs, and the two insulating states are distinct and can not be adiabatically connected. The nature of and transitions between the three states are discussed.Comment: 5 pages, 4 figures. Submitted to Physical Review Letter

    A local metallic state in globally insulating La1.24Sr1.76Mn2O7La_{1.24}Sr_{1.76}Mn_2O_7 well above the metal-insulator transition

    Full text link
    Angle-resolved photoemission spectroscopy was used to investigate the evolution of the electronic structure across the metal-insulator transition in bi-layer manganite La1.24Sr1.76Mn2O7La_{1.24}Sr_{1.76}Mn_2O_7. We found that this system is a metal for T<TCT<T_C, a local metal but global insulator for T<TC<TT<T_C<T^*, and a global insulator for T>TT>T^*. These results indicate the critical role of electronic phase separation and percolation effects for the metal-insulator transition in La1.24Sr1.76Mn2O7La_{1.24}Sr_{1.76}Mn_2O_7.Comment: 4 pages, 4 figure

    Quantum phase transitions in the Kane-Mele-Hubbard model

    Full text link
    We study the two-dimensional Kane-Mele-Hubbard model at half filling by means of quantum Monte Carlo simulations. We present a refined phase boundary for the quantum spin liquid. The topological insulator at finite Hubbard interaction strength is adiabatically connected to the groundstate of the Kane-Mele model. In the presence of spin-orbit coupling, magnetic order at large Hubbard U is restricted to the transverse direction. The transition from the topological band insulator to the antiferromagnetic Mott insulator is in the universality class of the three-dimensional XY model. The numerical data suggest that the spin liquid to topological insulator and spin liquid to Mott insulator transitions are both continuous.Comment: 13 pages, 10 figures; final version; new Figs. 4(b) and 8(b

    Temperature dependent correlations in covalent insulators

    Full text link
    Motivated by the peculiar behavior of FeSi and FeSb2 we study the effect of local electronic correlations on magnetic, transport and optical properties in a specific type of band insulator, namely a covalent insulator. Investigating a minimum model of covalent insulator within a single-site dynamical mean-field approximation we are able to obtain the crossover from low temperature non-magnetic insulator to high-temperature paramagnetic metal with parameters realistic for FeSi and FeSb2 systems. Our results show that the behavior of FeSi does not imply microscopic description in terms of Kondo insulator (periodic Anderson model) as can be often found in the literature, but in fact reflects generic properties of a broader class of materials.Comment: 4 pages, 4 figure

    Theoretical prediction of topological insulator in ternary rare earth chalcogenides

    Full text link
    A new class of three-dimensional topological insulator, ternary rare earth chalcogenides, is theoretically investigated with ab initio calculations. Based on both bulk band structure analysis and the direct calculation of topological surface states, we demonstrate that LaBiTe3 is a topological insulator. La can be substituted by other rare earth elements, which provide candidates for novel topological states such as quantum anomalous Hall insulator, axionic insulator and topological Kondo insulator. Moreover, YBiTe3 and YSbTe3 are found to be normal insulators. They can be used as protecting barrier materials for both LaBiTe3 and Bi2Te3 families of topological insulators for their well matched lattice constants and chemical composition.Comment: 5 pages, 3 figures and 1 tabl

    Quasi-Topological Insulator and Trigonal Warping in Gated Bilayer Silicene

    Full text link
    Bilayer silicene has richer physical properties than bilayer graphene due to its buckled structure together with its trigonal symmetric structure. The buckled structure arises from a large ionic radius of silicon, and the trigonal symmetry from a particular way of hopping between two silicenes. It is a topologically trivial insulator since it carries a trivial Z2\mathbb{Z}_{2} topological charge. Nevertheless, its physical properties are more akin to those of a topological insulator than those of a band insulator. Indeed, a bilayer silicene nanoribbon has edge modes which are almost gapless and helical. We may call it a quasi-topological insulator. An important observation is that the band structure is controllable by applying the electric field to a bilayer silicene sheet. We investigate the energy spectrum of bilayer silicene under electric field. Just as monolayer silicene undergoes a phase transition from a topological insulator to a band insulator at a certain electric field, bilayer silicene makes a transition from a quasi-topological insulator to a band insulator beyond a certain critical field. Bilayer silicene is a metal while monolayer silicene is a semimetal at the critical field. Furthermore we find that there are several critical electric fields where the gap closes due to the trigonal warping effect in bilayer silicene.Comment: 8 pages, 11 figures, to be published in J. Phys. Soc. Jp
    corecore