80,760 research outputs found
Synthesis and characterization of hybrid organic-inorganic materials based on sulphonated polyamideimide and silica
The preparation of hybrid organic–inorganic
membrane materials based on a sulphonated polyamideimide
resin and silica filler has been studied. The method
allows the sol–gel process to proceed in the presence of a
high molecular weight polyamideimide, resulting in well
dispersed silica nanoparticles (<50 nm) within the polymer
matrix with chemical bonding between the organic and
inorganic phases. Tetraethoxysilane (TEOS) was used as
the silica precursor and the organosilicate networks were
bonded to the polymer matrix via a coupling agent
aminopropyltriethoxysilane (APTrEOS). The structure and
properties of these hybrid materials were characterized via a
range of techniques including FTIR, TGA, DSC, SEM and
contact angle analysis. It was found that the compatibility
between organic and inorganic phases has been greatly
enhanced by the incorporation of APTrEOS. The thermal
stability and hydrophilic properties of hybrid materials have
also been significantly improved
Recommended from our members
Highly Stable Luminous "snakes" from CsPbX3 Perovskite Nanocrystals Anchored on Amine-Coated Silica Nanowires
CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) are known for their exceptional optoelectronic properties, yet the material's instability toward polar solvents, heat, or UV irradiation greatly limits its further applications. Herein, an efficient in situ growing strategy has been developed to give highly stable perovskite NC composites (abbreviated CsPbX3@CA-SiO2) by anchoring CsPbX3 NCs onto silica nanowires (NWs), which effectively depresses the optical degradation of their photoluminescence (PL) and enhances stability. The preparation of surface-functionalized serpentine silica NWs is realized by a sol-gel process involving hydrolysis of a mixture of tetraethyl orthosilicate (TEOS), 3-aminopropyltriethoxysilane (APTES), and trimethoxy(octadecyl)silane (TMODS) in a water/oil emulsion. The serpentine NWs are formed via an anisotropic growth with lengths up to 8 μm. The free amino groups are employed as surface ligands for growing perovskite NCs, yielding distributed monodisperse NCs (∼8 nm) around the NW matrix. The emission wavelength is tunable by simple variation of the halide compositions (CsPbX3, X = Cl, Br, or I), and the composites demonstrate a high photoluminescence quantum yield (PLQY 32-69%). Additionally, we have demonstrated the composites CsPbX3@CA-SiO2 can be self-woven to form a porous 3D hierarchical NWs membrane, giving rise to a superhydrophobic surface with hierarchical micro/nano structural features. The resulting composites exhibit high stability toward water, heat, and UV irradiation. This work elucidates an effective strategy to incorporate perovskite nanocrystals onto functional matrices as multifunctional stable light sources
Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-matter Interactions
Van der Waals (vdW) solids, as a new type of artificial materials that
consist of alternating layers bonded by weak interactions, have shed light on
fascinating optoelectronic device concepts. As a result, a large variety of vdW
devices have been engineered via layer-by-layer stacking of two-dimensional
materials, although shadowed by the difficulties of fabrication. Alternatively,
direct growth of vdW solids has proven as a scalable and swift way, highlighted
by the successful synthesis of graphene/h-BN and transition metal
dichalcogenides (TMDs) vertical heterostructures from controlled vapor
deposition. Here, we realize high-quality organic and inorganic vdW solids,
using methylammonium lead halide (CH3NH3PbI3) as the organic part (organic
perovskite) and 2D inorganic monolayers as counterparts. By stacking on various
2D monolayers, the vdW solids behave dramatically different in light emission.
Our studies demonstrate that h-BN monolayer is a great complement to organic
perovskite for preserving its original optical properties. As a result,
organic/h-BN vdW solid arrays are patterned for red light emitting. This work
paves the way for designing unprecedented vdW solids with great potential for a
wide spectrum of applications in optoelectronics
The size and polydispersity of silica nanoparticles under simulated hot spring conditions
The nucleation and growth of silica nanoparticles in supersaturated geothermal waters was simulated using a flow-through geothermal simulator system. The effect of silica concentration ([SiO2]), ionic strength (IS), temperature (T) and organic additives on the size and polydispersity of the forming silica nanoparticles was quantified. A decrease in temperature (58 to 33°C) and the addition of glucose restricted particle growth to sizes <20 nm, while varying [SiO2] or ISdid not affect the size (30-35 nm) and polydispersity (±9 nm) observed at 58°C. Conversely, the addition of xanthan gum induced the development of thin films that enhanced silica aggregation
Sol–gel synthesis and thermal behavior of bioactive ferrous citrate–silica hybrid materials
Imbalance of the iron level in the body causes several diseases. In particular, the low level of iron, during pregnancy, is
responsible for the iron deficiency anemia, and even of neurodegenerative diseases. Although the treatment of iron
deficiency anemia with oral iron supplements has been known, this problem still afflicts many people. The aim of this work
was the development of a system able to release ferrous ions in a controlled manner. Controlled drug release for medical
applications, indeed, appears to be a very interesting alternative to a systemic therapy because it is assurance of treatment
continuity and drug stability and optimizes drug absorption. For this purpose, ferrous citrate (Fe(II)C) was synthesized by a
redox reaction between iron powder and citric acid. Fourier transform infrared spectroscopy (FTIR), 1,10-phenanthroline
and sodium thiocyanate colorimetric assays confirmed that only Fe(II)C was obtained by redox reaction. Afterward,
obtained Fe(II)C was embedded within a SiO2 matrix in different mass percentage, by means of a sol–gel route. FTIR
spectroscopy and simultaneous thermogravimetry/first-order derivative of thermogravimetry were used to confirm the
Fe(II)C presence in the silica matrix and to investigate the thermal behavior of the sol–gel materials, respectively. The
bioactivity test carried out by soaking the synthesized drug delivery systems in a simulated body fluid showed that the
biological properties of the silica matrix are not modified by the presence of Fe(II)C
Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes
10.1039/c5ta09060aJournal of Materials Chemistry A41270-27
Synthesis of porous silicates
The issues of importance and future concern in the synthesis of porous silicates and porous materials that contain a large fraction of silica, e.g. zeolites and other crystalline molecular sieves, are reviewed. The thermodynamics of zeolite synthesis are discussed, including a detailed thermodynamic analysis of the synthesis of pure-silica ZSM-5. The kinetics of porous silicate synthesis are reviewed, with particular emphasis on the control of porous structure formation through the use of organic structure-directing agents. Ordered mesoporous materials are discussed in the context of distinguishing their features from zeolites in order to describe further the unique properties of each class of material. Finally, several unresolved issues in the understanding of the synthesis process are outlined, the resolutions of which would aid in the synthesis of porous silicates by design
Molding with nanoparticle-based one-dimensional photonic crystals: A route to flexible and transferable Bragg mirrors of high dielectric contrast
Self-standing, flexible Bragg mirror films of high refractive index contrast and showing intense and wide Bragg peaks are herein presented. Nanoparticle-based one-dimensional photonic crystals are used as templates to infiltrate a polymer, which provides the multilayer with mechanical stability while preserving the dielectric contrast existing in the mold. Such films can be lifted off the substrate and used to coat another surface of arbitrary shapeMinisterio de Ciencia y Educación MAT2008-02166Junta de Andalucía FQM-357
Depth sensing indentation of organic-inorganic hybrid coatings deposited onto a polymeric substrate
PEO-Si/SiO2 hybrid coatings deposited onto a PVC substrate were micromechanically characterized using depth sensing indentation. The effect of curing time and coating thickness was investigated. Elastic moduli of coated systems determined by the Oliver–Pharr approach displayed a continuous decreasing trend with increasing indentation depth, reflecting that the hybrids are stiffer than the substrate. Aiming to extract coating-only elastic modulus a simple method based on FE simulations was developed. The method was applied to evaluate the moduli of the hybrid coatings and the values were compared with those obtained by applying different approaches available in literature. The elastic modulus of PEO-Si/SiO2 hybrids was proven to be practically independent of curing time after 24 h. However, large curing times resulted in coatings being more prone to failure.Fil: Fasce, Laura Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Seltzer, Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Frontini, Patricia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentin
- …
