80,760 research outputs found

    Synthesis and characterization of hybrid organic-inorganic materials based on sulphonated polyamideimide and silica

    Get PDF
    The preparation of hybrid organic–inorganic membrane materials based on a sulphonated polyamideimide resin and silica filler has been studied. The method allows the sol–gel process to proceed in the presence of a high molecular weight polyamideimide, resulting in well dispersed silica nanoparticles (<50 nm) within the polymer matrix with chemical bonding between the organic and inorganic phases. Tetraethoxysilane (TEOS) was used as the silica precursor and the organosilicate networks were bonded to the polymer matrix via a coupling agent aminopropyltriethoxysilane (APTrEOS). The structure and properties of these hybrid materials were characterized via a range of techniques including FTIR, TGA, DSC, SEM and contact angle analysis. It was found that the compatibility between organic and inorganic phases has been greatly enhanced by the incorporation of APTrEOS. The thermal stability and hydrophilic properties of hybrid materials have also been significantly improved

    Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-matter Interactions

    Full text link
    Van der Waals (vdW) solids, as a new type of artificial materials that consist of alternating layers bonded by weak interactions, have shed light on fascinating optoelectronic device concepts. As a result, a large variety of vdW devices have been engineered via layer-by-layer stacking of two-dimensional materials, although shadowed by the difficulties of fabrication. Alternatively, direct growth of vdW solids has proven as a scalable and swift way, highlighted by the successful synthesis of graphene/h-BN and transition metal dichalcogenides (TMDs) vertical heterostructures from controlled vapor deposition. Here, we realize high-quality organic and inorganic vdW solids, using methylammonium lead halide (CH3NH3PbI3) as the organic part (organic perovskite) and 2D inorganic monolayers as counterparts. By stacking on various 2D monolayers, the vdW solids behave dramatically different in light emission. Our studies demonstrate that h-BN monolayer is a great complement to organic perovskite for preserving its original optical properties. As a result, organic/h-BN vdW solid arrays are patterned for red light emitting. This work paves the way for designing unprecedented vdW solids with great potential for a wide spectrum of applications in optoelectronics

    The size and polydispersity of silica nanoparticles under simulated hot spring conditions

    Get PDF
    The nucleation and growth of silica nanoparticles in supersaturated geothermal waters was simulated using a flow-through geothermal simulator system. The effect of silica concentration ([SiO2]), ionic strength (IS), temperature (T) and organic additives on the size and polydispersity of the forming silica nanoparticles was quantified. A decrease in temperature (58 to 33°C) and the addition of glucose restricted particle growth to sizes &#60;20 nm, while varying [SiO2] or ISdid not affect the size (30-35 nm) and polydispersity (±9 nm) observed at 58°C. Conversely, the addition of xanthan gum induced the development of thin films that enhanced silica aggregation

    Sol–gel synthesis and thermal behavior of bioactive ferrous citrate–silica hybrid materials

    Get PDF
    Imbalance of the iron level in the body causes several diseases. In particular, the low level of iron, during pregnancy, is responsible for the iron deficiency anemia, and even of neurodegenerative diseases. Although the treatment of iron deficiency anemia with oral iron supplements has been known, this problem still afflicts many people. The aim of this work was the development of a system able to release ferrous ions in a controlled manner. Controlled drug release for medical applications, indeed, appears to be a very interesting alternative to a systemic therapy because it is assurance of treatment continuity and drug stability and optimizes drug absorption. For this purpose, ferrous citrate (Fe(II)C) was synthesized by a redox reaction between iron powder and citric acid. Fourier transform infrared spectroscopy (FTIR), 1,10-phenanthroline and sodium thiocyanate colorimetric assays confirmed that only Fe(II)C was obtained by redox reaction. Afterward, obtained Fe(II)C was embedded within a SiO2 matrix in different mass percentage, by means of a sol–gel route. FTIR spectroscopy and simultaneous thermogravimetry/first-order derivative of thermogravimetry were used to confirm the Fe(II)C presence in the silica matrix and to investigate the thermal behavior of the sol–gel materials, respectively. The bioactivity test carried out by soaking the synthesized drug delivery systems in a simulated body fluid showed that the biological properties of the silica matrix are not modified by the presence of Fe(II)C

    Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes

    Get PDF
    10.1039/c5ta09060aJournal of Materials Chemistry A41270-27

    Synthesis of porous silicates

    Get PDF
    The issues of importance and future concern in the synthesis of porous silicates and porous materials that contain a large fraction of silica, e.g. zeolites and other crystalline molecular sieves, are reviewed. The thermodynamics of zeolite synthesis are discussed, including a detailed thermodynamic analysis of the synthesis of pure-silica ZSM-5. The kinetics of porous silicate synthesis are reviewed, with particular emphasis on the control of porous structure formation through the use of organic structure-directing agents. Ordered mesoporous materials are discussed in the context of distinguishing their features from zeolites in order to describe further the unique properties of each class of material. Finally, several unresolved issues in the understanding of the synthesis process are outlined, the resolutions of which would aid in the synthesis of porous silicates by design

    Molding with nanoparticle-based one-dimensional photonic crystals: A route to flexible and transferable Bragg mirrors of high dielectric contrast

    Get PDF
    Self-standing, flexible Bragg mirror films of high refractive index contrast and showing intense and wide Bragg peaks are herein presented. Nanoparticle-based one-dimensional photonic crystals are used as templates to infiltrate a polymer, which provides the multilayer with mechanical stability while preserving the dielectric contrast existing in the mold. Such films can be lifted off the substrate and used to coat another surface of arbitrary shapeMinisterio de Ciencia y Educación MAT2008-02166Junta de Andalucía FQM-357

    Depth sensing indentation of organic-inorganic hybrid coatings deposited onto a polymeric substrate

    Get PDF
    PEO-Si/SiO2 hybrid coatings deposited onto a PVC substrate were micromechanically characterized using depth sensing indentation. The effect of curing time and coating thickness was investigated. Elastic moduli of coated systems determined by the Oliver–Pharr approach displayed a continuous decreasing trend with increasing indentation depth, reflecting that the hybrids are stiffer than the substrate. Aiming to extract coating-only elastic modulus a simple method based on FE simulations was developed. The method was applied to evaluate the moduli of the hybrid coatings and the values were compared with those obtained by applying different approaches available in literature. The elastic modulus of PEO-Si/SiO2 hybrids was proven to be practically independent of curing time after 24 h. However, large curing times resulted in coatings being more prone to failure.Fil: Fasce, Laura Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Seltzer, Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Frontini, Patricia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentin
    corecore