6,795,322 research outputs found

    Information Management

    Get PDF

    Data Mining Group

    Get PDF
    Informatio

    Information scraps: how and why information eludes our personal information management tools

    No full text
    In this paper we describe information scraps -- a class of personal information whose content is scribbled on Post-it notes, scrawled on corners of random sheets of paper, buried inside the bodies of e-mail messages sent to ourselves, or typed haphazardly into text files. Information scraps hold our great ideas, sketches, notes, reminders, driving directions, and even our poetry. We define information scraps to be the body of personal information that is held outside of its natural or We have much still to learn about these loose forms of information capture. Why are they so often held outside of our traditional PIM locations and instead on Post-its or in text files? Why must we sometimes go around our traditional PIM applications to hold on to our scraps, such as by e-mailing ourselves? What are information scraps' role in the larger space of personal information management, and what do they uniquely offer that we find so appealing? If these unorganized bits truly indicate the failure of our PIM tools, how might we begin to build better tools? We have pursued these questions by undertaking a study of 27 knowledge workers. In our findings we describe information scraps from several angles: their content, their location, and the factors that lead to their use, which we identify as ease of capture, flexibility of content and organization, and avilability at the time of need. We also consider the personal emotive responses around scrap management. We present a set of design considerations that we have derived from the analysis of our study results. We present our work on an application platform, jourknow, to test some of these design and usability findings

    Classification

    Get PDF
    In Classification learning, an algorithm is presented with a set of classified examples or ‘‘instances’’ from which it is expected to infer a way of classifying unseen instances into one of several ‘‘classes’’. Instances have a set of features or ‘‘attributes’’ whose values define that particular instance. Numeric prediction, or ‘‘regression,’’ is a variant of classification learning in which the class attribute is numeric rather than categorical. Classification learning is sometimes called supervised because the method operates under supervision by being provided with the actual outcome for each of the training instances. This contrasts with Data clustering (see entry Data Clustering), where the classes are not given, and with Association learning (see entry Association Learning), which seeks any association – not just one that predicts the class

    Automated Data Management Information System (ADMIS)

    Get PDF
    ADMIS stores and controls data and documents associated with manned space flight effort. System contains all data oriented toward a specific document; it is primary source of reports generated by the system. Each group of records is composed of one document record, one distribution record for each recipient of the document, and one summary record
    corecore