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Synonyms
Classification learning; Supervised learning; Learning

with a teacher, Concept learning; Statistical decision

techniques

Definition
In Classification learning, an algorithm is presented

with a set of classified examples or ‘‘instances’’ from

which it is expected to infer a way of classifying unseen

instances into one of several ‘‘classes’’. Instances have a

set of features or ‘‘attributes’’ whose values define that

particular instance. Numeric prediction, or ‘‘regres-

sion,’’ is a variant of classification learning in which

the class attribute is numeric rather than categorical.

Classification learning is sometimes called supervised

because the method operates under supervision by

being provided with the actual outcome for each of

the training instances. This contrasts with Data clus-

tering (see entry Data ClusteringAu1 ), where the classes are

not given, and with Association learning (see entry

Association Learning), which seeks any association –

not just one that predicts the class.

Historical Background
Classification learning grew out of two strands of work

that began in the 1950s and were actively pursued

throughout the 1960s: statistical decision techniques

and the Perceptron model of neural networks. In 1955

statisticians Bush and Mosteller published a seminal

book Stochastic Models for Learning which modeled in

mathematical terms the psychologist B. F. Skinner’s

experimental analyses of animal behavior using re-

inforcement learning [2]. The ‘‘perceptron’’ was a

one-level linear classification scheme developed by

Rosenblatt around 1957 and published in his book

Principles of Neurodynamics: Perceptrons and the Theory

of Brain Mechanisms [10]. In a response published in

1969, Minsky and Papert argued that perceptrons were

simplistic in terms of their representational capability

and had been greatly over-hyped as potentially univer-

sal learning machines [6]. This scathing response by

widely-respected artificial intelligence pioneers damp-

ened research in neural nets and machine learning

in general. Meanwhile, in 1957 others were investigat-

ing the application of Bayesian decision schemes

to pattern recognition; the general conclusion was

that full Bayesian models were prohibitively expensive.

In 1960 Maron investigated in the context of infor-

mation retrieval what has since become known as

the ‘‘naı̈ve Bayes’’ approach, which assumes independ-

ence between attributes notwithstanding overwhelm-

ing evidence to the contrary [5]. Other early machine

learning work was buried in cybernetics, the study of

feedback and derived concepts such as communication

and control in living and artificial organisms. Through-

out the 1960s classification learning applied to pattern

recognition was the central thread of the embryo field

of machine learning, as underlined by the subtitle of

Nilsson’s 1965 landmark book Learning Machines –

Foundations of Trainable Pattern-Classifying Systems [7].

Symbolic learning techniques began to recover from

the doldrums in the late 1970s, with influential and

almost simultaneous publications by Breiman et al. on

classification and regression trees (the CARTsystem) [1]

and Quinlan on decision tree induction (the ID3 and

later C4.5 systems) [8,9]. Whereas Breiman was a stat-

istician, Quinlan was an experimental computer scien-

tist who first used decision trees not to generalize but to

condense large collections of chess end-games. Their

work proceeded independently, and the similarities

remained unnoticed until years later. CART (by default)

producesmultivariate trees whose tests can involvemore

than one attribute: these are more accurate and smaller

than the univariate trees produced by Quinlan’s systems,

but take longer to generate.
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The first workshop devoted to machine learning

was held in 1980 at Carnegie-Mellon University; fur-

ther workshops followed in 1983 and 1985. These

invitation-only events became an open conference in

1988. Meanwhile the journal Machine Learning was

established in 1986. By the 1990s the subject had be-

come the poster child of artificial intelligence – a suc-

cessful, burgeoning, practical technology that eschewed

the classical topics of general knowledge representation,

logical deduction, theorem proving, search techniques,

computational linguistics, expert systems and philo-

sophical foundations that still characterize the field

today. Classification learning, which forms the core of

machine learning, outgrew its behaviorist and neurolog-

ical roots andmoved into the practical realm of database

systems.

Early work focused on the process of learning –

learning curves, the possibility of sustained learning,

and the like – rather than the results of learning. How-

ever, with the new emphasis on applications, objective

techniques of empirical testing began to supplant the

scenario-based style of evaluation that characterized

the early days. A major breakthrough came during

the 1980s when researchers finally realized that evalu-

ating a learning system on its training data gave mis-

leading results, and instead put the subject on a secure

statistical footing.

Scientific Fundamentals
One of the most instructive lessons learned since the

renaissance of classification in the 1980s is that simple

schemes often work very well. Today, practitioners

strongly recommend the adoption of a ‘‘simplicity-

first’’ methodology when analyzing practical datasets.

There are many different kinds of simple structure that

datasets can exhibit. One dataset might have a single

attribute that does all the work, the others being irrele-

vant or redundant. Alternatively, the attributes might

contribute independently and equally to the final

outcome. Underlying a third dataset might be a simple

contingent structure involving just a few attributes.

In a fourth, a few independent rules may govern the

assignment of instances to classes. In a fifth, classifica-

tions appropriate to particular regions of instance

space might depend on the distance between the

instances themselves. A sixth might exhibit depen-

dence among numeric attributes, determined by a

sum of attribute values with appropriately chosen

weights. This sum might represent the final output

for numeric prediction, or be compared to a fixed

threshold in a binary decision setting. Each of these

examples leads to a different style of method suited to

discovering that kind of structure.

Rules Based on a Single Attribute

Even when instances have several attributes, the classi-

fication decision may rest on the value of just one of

them. Such a structure constitutes a set of rules that all

test the same attribute (or, equivalently, a one-level

decision tree). It can be found by evaluating the suc-

cess, in terms of the total number of errors on the

training data, of testing each attribute in turn, predict-

ing the most prevalent class for each value of that

attribute. If an attribute has many possible values –

and particularly if it has numeric values – this may

‘‘overfit’’ the training data by generating a rule that has

almost as many branches as there are instances. Minor

modifications to the scheme overcome this problem.

A startling discovery published in 1993 was that

‘‘very simple classification rules perform well on most

commonly used datasets’’ [3]. In an empirical investiga-

tion of the accuracy of rules that classify instances on the

basis of a single attribute, on most standard datasets the

resulting rulewas found to be as accurate as the structures

induced by the majority of machine learning systems –

which are far more complicated. The moral? – always

compare new methods with simple baseline schemes.

Statistical Modeling (see entry Bayesian Classification)

Another simple technique is to use all attributes and

allow them to make contributions to the decision that

are equally important and independent of one another,

given the class. Although grossly unrealistic – what

makes real-life datasets interesting is that the attributes

are certainly not equally important or independent – it

leads to a statistically-based scheme that works surpris-

ingly well in practice. Employed in information re-

trieval as early as 1960 [5], the idea was rediscovered,

dubbed ‘‘naı̈ve Bayes,’’ and introduced into machine

learning 30 years later [4]. Despite the disparaging

moniker it works well on many actual datasets. Over-

reliance on the independence of attributes can be

countered by applying attribute selection techniques.

Divide and Conquer Technique (see entry Decision Tree

Classification)

The process of constructing a decision tree can be

expressed recursively. First, select an attribute to use
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at the root, and make a branch for each possible value.

This splits the instance set into subsets, one for every

value of the attribute. Now repeat the process recursively

for each branch, using only those instances that actually

reach the branch. If all instances at a node have the same

classification, stop developing that part of the tree. This

method of ‘‘top-down induction of decision trees’’ was

explored and popularized by Quinlan [8,9]. The nub of

the problem is to select an appropriate attribute at each

stage. Ofmany heuristics that have been investigated, the

dominant one is to measure the expected amount of

information gained by knowing that attribute’s actual

value. Having generated the tree, it is selectively pruned

back from the leaves to avoid over-fitting. A series of

improvements include ways of dealing with numeric

attributes,missing values, and noisy data; and generating

rules from trees.

Covering Algorithms (see entry Rule-Based

Classification)

Classification rules can be produced by taking each

class in turn and seeking a rule that covers all its

instances, at the same time excluding instances not in

the class. This bottom-up approach is called covering

because at each stage a rule is identified that ‘‘covers’’

some of the instances. Although trees can always be

converted into an equivalent rule set, and vice versa,

the perspicuity of the representation often differs.

Rules can be symmetric whereas trees must select one

attribute to split on first, which can produce trees that

are much larger than an equivalent set of rules. In

the multiclass case a decision tree split takes account

of all classes and maximizes the information gained,

whereas many rule generation methods concentrate

on one class at a time, disregarding what happens to

the others.

Instance-Based Learning (see entry Nearest Neighbor

Classification)

Another approach is to store training instances verba-

tim and, given an unknown test instance, use a distance

function to determine the closest training instance and

predict its class for the test instance. Suitable distance

functions are the Euclidean or Manhattan (city-block)

metric; attributes should be normalized to lie between

0 and 1 to compensate for scaling effects. For nominal

attributes that assume symbolic rather than numeric

values, the distance between two values is 1 if they are

not the same and 0 otherwise. In the k-nearest

neighbor strategy, some fixed number of nearest neigh-

bors – say five – are located and used together to

determine the class of the test instance by majority

vote. Another way of proofing the database against

noise is to selectively and judiciously choose the exem-

plars that are added. Nearest-neighbor classification

was notoriously slow until advanced data structures

like kD-trees were applied in the early 1990s.

Linear Models (see entry Linear Regression)

When the outcome and all attributes are numeric,

linear regression can be used. This expresses the class

as a linear combination of the attributes, with weights

that are calculated from the training data. Linear re-

gression has been popular in statistical applications for

decades. If the data exhibits a nonlinear dependency,

the best-fitting straight line will be found, where ‘‘best’’

is interpreted in the least-mean-squared-difference

sense. Although this line may fit poorly, linear models

can serve as building blocks for more complex learning

schemes.

Linear Classification (see entry Neural Networks,

Support Vector Machine)

The idea of linear classification is to find a hyperplane in

instance space that separates two classes. (In the multi-

class case, a binary decision can be learned for each

pair of classes.) If the linear sum exceeds zero the first

class is predicted; otherwise the second is predicted. If

the data is linearly separable – that is, it can be separated

perfectly using a hyperplane – the perceptron learn-

ing rule espoused by Rosenblatt is guaranteed to find

a separating hyperplane [10]. This rule adjusts the

weight vector whenever the prediction for a particular

instance is erroneous: if the first class is predicted the

instance (expressed as a vector) is added to the weight

vector (making it more likely that the result will be

positive next time around); otherwise the instance is

subtracted.

There have been many powerful extensions of this

basic idea. Support vector machines use linear deci-

sions to implement nonlinear class boundaries by

transforming the input using a nonlinear mapping.

Multilayer perceptrons connect many linear models

in a hierarchical arrangement that can represent non-

linear decision boundaries, and use a technique called

‘‘back-propagation’’ to distribute the effect of errors

through this hierarchy during training.
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Missing Values

Most datasets encountered in practice contain missing

values. Sometimes different kinds are distinguished

(e.g., unknown vs. unrecorded vs. irrelevant values).

They may occur for a variety of reasons. There may be

some significance in the fact that a certain instance has

an attribute value missing – perhaps a decision was

taken not to perform some test – and that might

convey information about the instance other than the

mere absence of the value. If this is the case, not tested

should be recorded as another possible value for this

attribute. Only someone familiar with the data can

make an informed judgment as to whether a particular

value being missing has some significance or should

simply be coded as an ordinary missing value. For

example, researchers analyzing medical databases have

noticed that cases may, in some circumstances, be diag-

nosable strictly from the tests that a doctor decides to

make, regardless of the outcome of the tests. Then a

record of which values are ‘‘missing’’ is all that is needed

for a complete diagnosis – the actual measurements can

be ignored entirely!

Meta-Learning

Decisions can often be improved by combining the

output of several different models. Over the past decade

or so the techniques of bagging (see entry Bagging),

boosting (see entry Boosting), and stacking have been

developed that learn an ensemble of models and deploy

them together. Their performance is often astonishingly

good. Researchers have struggled to understand why,

and during that struggle new methods have emerged

that are sometimes even better. For example, whereas hu-

man committees rarely benefit from noisy distractions,

shaking up bagging by adding random variants of classi-

fiers can improve performance. Boosting – perhaps the

most powerful of the three methods – is related to the

established statistical technique of additive models, and

this realization has led to improved procedures.

Combined models share the disadvantage of being

rather hard to analyze: they can comprise dozens or

even hundreds of individual learners and it is not easy

to understand in intuitive terms what factors are con-

tributing to the improved decisions. In the last few years

methods have been developed that combine the perfor-

mance benefits of committees with comprehensible

models. Some produce standard decision tree models;

others introduce new variants of trees that provide

optional paths.

Evaluation

For classification problems, performance is naturally

measured in terms of the error rate. The classifier pre-

dicts the class of each test instance: if it is correct, that

is counted as a success; if not, it is an error. The error

rate is the proportion of errors made over a whole set

of instances, and reflects the overall performance of the

classifier. Performance on the training set is definitely

not a good indicator of expected performance on an

independent test set. A classifier is overfitted to a data-

set if its structure reflects that particular set to an

excessive degree. For example, the classifier might be

generated by rote learning without any generalization

whatsoever. An overfitted classifier usually exhibits

performance on the training set which is excellent but

far from representative of performance on other data-

sets from the same source.

In practice, one must predict performance bounds

based on experiments with whatever data is available.

Labeled data is required for both training and testing,

and is often hard to obtain. A single data set can be

partitioned for training and testing in various different

ways. In a popular statistical technique called cross-

validation the experimenter first decides on a fixed

number of ‘‘folds,’’ or partitions of the data – say three.

The data is split into three approximately equal portions,

and each in turn is used for testing while the remainder

serves for training. The procedure is repeated three times

so that in the end every instance has been used exactly

once for testing. This is called threefold cross-validation.

‘‘Stratification’’ is the idea of ensuring that all classes

are represented in all folds in approximately the right

proportions. Stratified tenfold cross-validation has

become a common standard for estimating the error

rate of a classification learning scheme. Alternatives

include leave-one-out cross-validation, which is effec-

tively n-fold cross-validation where n is the size of the

data set; and the bootstrap, which takes a carefully-

judged number of random samples from the data with

replacement and uses these for training, combining the

error rate on the training data (an optimistic estimate)

with that on the test data (a pessimistic estimate, since

the classifier has only been trained on a subset of the full

data) to get an overall estimate.

Key Applications
Classification learning is one of the flagship triumphs

of research in artificial intelligence. It has been used for

problems that range from selecting promising embryos
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to implant in a human womb during in vitro fertiliza-

tion to the selection of which cows in a herd to sell off

to an abattoir. Fielded applications are legion. They

include decisions involving judgment, such as whether

a credit company should make a loan to a particular

person; screening images, such as the detection of oil

slicks from satellite images; load forecasting, such as

combining historical load information with current

weather conditions and other events to predict hourly

demand for electricity; diagnosis, such as fault finding

and preventative maintenance of electromechanical

devices; marketing and sales, such as detecting custo-

mers who are likely to switch to a competitor.

URL to Code
The Weka machine learning workbench is a popular

tool for experimental investigation and comparison

of classification learning techniques, as well as other

machine learning methods. It is described in [11] and

available for download from http://www.cs.waikato.ac.

nz/ml/weka.
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