30,585 research outputs found

    Lévy measures of infinitely divisible random vectors and Slepian inequalities

    Full text link
    We study Slepian inequalities for general non-Gaussian infinitely divisible random vectors. Conditions for such inequalities are expressed in terms of the corresponding Levy measures of these vectors. These conditions are shown to be nearly best possible, and for a large subfamily of infinitely divisible random vectors these conditions are necessary and sufficient for Slepian inequalities. As an application we consider symmetric αα\textbackslashalpha-stable Ornstein-Uhlenbeck processes and a family of infinitely divisible random vectors introduced by Brown and Rinott

    "Empirical Likelihood Estimation of Levy Processes (Revised: March 2005)"

    Get PDF
    We propose a new parameter estimation procedure for the Levy processes and the class of infinitely divisible distribution. We shall show that the empirical likelihood method gives an easy way to estimate the key parameters of the infinitely divisible distributions including the class of stable distributions as a special case. The maximum empirical likelihood estimator by using the empirical characteristic functions gives the consistency, the asymptotic normality, and the asymptotic efficiency for the key parameters when the number of restrictions on the empirical characteristic functions is large. Test procedures can be also developed. Some extensions to the estimating equations problem with the infinitely divisible distributions are discussed.

    Convergence of the Fourth Moment and Infinite Divisibility: Quantitative estimates

    Full text link
    We give an estimate for the Kolmogorov distance between an infinitely divisible distribution (with mean zero and variance one) and the standard Gaussian distribution in terms of the difference between the fourth moment and 3. In a similar fashion we give an estimate for the Kolmogorov distance between a freely infinitely divisible distribution and the Semicircle distribution in terms of the difference between the fourth moment and 2.Comment: 12 page

    Simulation of infinitely divisible random fields

    Full text link
    Two methods to approximate infinitely divisible random fields are presented. The methods are based on approximating the kernel function in the spectral representation of such fields, leading to numerical integration of the respective integrals. Error bounds for the approximation error are derived and the approximations are used to simulate certain classes of infinitely divisible random fields.Comment: 41 pages, 3 figure
    corecore