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Abstract

We propose a new parameter estimation procedure for the Lévy processes and
the class of infinitely divisible distribution. We shall show that the empirical like-
lihood method gives an easy way to estimate the key parameters of the infinitely
divisible distributions including the class of stable distributions as a special case.
The maximum empirical likelihood estimator by using the empirical characteristic
functions gives the consistency, the asymptotic normality, and the asymptotic ef-
ficiency for the key parameters when the number of restrictions on the empirical
characteristic functions is large. Test procedures can be also developed. Some
extensions to the estimating equations problem with the infinitely divisible distri-
butions are discussed.
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1. Introduction

There have been growing interests on the applications of the Lévy processes and
the class of infinitely divisible distributions in several research fields including financial
economics. One interesting class of infinitely divisible distributions is the class of stable
distributions. Since they are important classes of probability distributions, there have
been extensive studies by mathematicians in probability over several decades. See
Feller (1971), Zolotarev (1986), and Sato (1999) for the details of related problems
in the probability literatures. Several statistical applications of stable distributions
have been applied for modeling the fat-tail phenomena sometimes observed in financial
economics and other applied areas of statistics. See Mandelbrot (1963), Paulson et. al.
(1975), and Nolan (2001) for the early studies of the subject in the statistics literatures.
More recently, some applications of the more general Lévy processes and other class
of infinitely divisible distributions have been reported in the analyses of financial data.
See Bandorff-Nielsen et. al. (2001) and Carr et. al. (2002) for recent examples.

Several estimation methods for the key parameters of stable distributions have been
proposed and developed over the past few decades. DuMouchel (1971) has investigated
the parametric maximum likelihood estimation method and Nolan (1997) has extended
a numerical algorithm of the likelihood evaluation. Since it is not possible to obtain
any explicit form of the likelihood function for stable distributions except very special
cases, Fama and Roll (1968, 1971) proposed a practical estimation method based on the
percentiles of empirical distributions and later MuCulloch (1986) has improved their
method. Also another estimation method based on the empirical characteristic function
was originally proposed by Press (1972), and there have been several related studies by
Paulson et. al. (1975), Koutrouvelis (1980), Kogon and Williams (1998), Feuerverger
and McDunnough (1981a, 1981b). These estimation methods could be extended to the
more general Lévy processes.

The main purpose of this paper is to develop a new parameter estimation procedure
for the Lévy processes and some classes of infinitely divisible distributions based on the
empirical likelihood approach. The empirical likelihood method was originally proposed
by Owen (1988, 1990) for constructing nonparametric confidence intervals and later it
has been extended to the estimating equations problem by Qin and Lawless (1994). In
this paper first we shall show that we can apply the empirical likelihood approach to the
estimation problem of unknown parameters for stable distributions and the resulting
computational burden is not heavy. In particular, the maximum empirical likelihood
(MEL) estimator for the parameters of stable distribution we are proposing has some
desirable asymptotic properties; it has the consistency, the asymptotic normality, and
the asymptotic efficiency when the number of restrictions on the empirical characteristic
function is large under a set of general conditions. Also it is possible to develop the
empirical likelihood ratio statistics for the parameters of stable distributions which have
the desirable asymptotic property.

More importantly, it is rather straightforward to extend our estimation method
for the unknown parameters of stable distributions to the estimation of Lévy processes
and infinitely divisible distributions, and also to the estimating equations problem with
stable disturbances and other infinitely divisible disturbances. We shall show that it
is possible to estimate both the parameters of equations and the parameters of stable
distributions (or some infinitely divisible distributions) for disturbances at the same
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time by our method. It seems that it is not easy to solve this estimation problem by
the conventional methods proposed in the past studies and in this sense our estimation
method has some advantage over other methods. For the estimating equations problem,
Qin and Lawless (1994) have shown some asymptotic properties of the MEL estimator
and Kitamura et. al. (2001) have extended their results to one direction. In this respect
our study has some technical novelty because we are considering the case when the
number of restrictions grows with the sample size. Hence this paper can be regarded as
an extension of Qin and Lawless (1994) in another important direction. Our formulation
of the empirical likelihood method with many restrictions is closely related to a recent
unpublished work by Hjort et. al. (2004). Also the studies by Fan et. al. (2001), Shen
et. al. (1999), and Zhang and Gibels (2003) on the hypotheses testing problems have
discussed the related problems.

In Section 2, we formulate the empirical likelihood estimation method of the class
of stable distributions in the standard situation and state our main results on the
asymptotic properties of the MEL estimator and the related testing procedure. Then
in Section 3, we discuss the estimation problem of the Lévy processes and several
infinitely divisible distributions, and an extension to the estimating equations problem
when the disturbance terms follow the stable distribution (or some infinitely divisible
distributions). In Section 4, we report some simulation results and in Section 5 we
give some concluding remarks. The proofs of main results are given in Mathematical
Appendix.

2. Empirical Likelihood Estimation of Stable Distributions

In this section we first consider the situation when Xi (i = 1, . . . , n) are a sequence
of independently and identically distributed random variables and they follow the class
of stable distributions. Let the characteristic function of Xi be denoted by φθ(t), and its
real part and imaginary part be φR

θ (t) and φI
θ(t), respectively. We adopt the formulation

of the characteristic function used by Chamber et. al. (1976) for the class of stable
distribution and it is represented as

(2.1) φθ(t) = φR
θ (t) + iφI

θ(t) ,

where
φR

θ (t) = e−|γt|α cos[δt + βγt(|γt|α−1 − 1) tan πα
2 ] ,

φI
θ(t) = e−|γt|α sin[δt + βγt(|γt|α−1 − 1) tan πα

2 ]

and the parameter space is given by

Θ = {0 < α ≤ 2 ,−1 ≤ β ≤ 1 , γ > 0 , δ ∈ R} .

In the following analysis we denote the vector of unknown parameters θ = (α, β, γ, δ)
′

and the stable distribution associated with θ as Fθ(·) .
There are two non-standard problems in the estimation of the vector of unknown

parameters θ. It has been well-known in probability theory that except some special
cases (the normal distribution, the Cauchy distribution, and a Lévy distribution) we
do not have a simple explicit form of the probability density function and distribution
function. This makes some difficulty of the direct estimation of unknown parameters
including the parametric maximum likelihood method. Also since the stable distribu-
tions do not necessarily have the first and/or second moments, some of the standard
techniques in the statistical asymptotic theory cannot be directly applicable.
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2.1 Empirical Likelihood Method

In order to estimate the unknown parameters of the stable distributions, we are propos-
ing to use the empirical likelihood approach, which is similar to the one developed by
Qin and Lawless (1994). Because the stable distributions do not necessarily have the
first and second moments, we cannot utilize the moments of distributions. However, we
can use the information from the empirical characteristic functions instead. We define
the empirical likelihood function by

(2.2) Ln(Fθ) =
n∏

k=1

(Fθ(Xk) − Fθ(Xk−)) =
n∏

k=1

pk ,

where Fθ(·) is the distribution function and pk (k = 1, · · · , n) are the probability as-
signed to the data points of Xk. Without any further restrictions except pk ≥ 0
and

∑n
k=1 pk = 1, the empirical likelihood function Ln(Fθ) can be maximized at

pk = 1/n (k = 1, · · · , n). Let the empirical likelihood ratio function be

(2.3) Rn(Fθ) =
n∏

k=1

npk .

Then we define the maximum empirical likelihood estimator θ̂n for the vector of un-
known coefficients by maximizing the function Rn(Fθ) under the restrictions

Pn =
{

pk ≥ 0 (k = 1, . . . , n) ,
n∑

k=1

pk = 1 ,
n∑

k=1

pk

(
cos(tlXk) − φR

θ (tl)
)

= 0,

n∑
k=1

pk

(
sin(tlXk) − φI

θ(tl)
)

= 0 (l = 1, . . . , m)
}

.

In the above restrictions m is the number of restrictions on the empirical characteristic
functions and we take m ≥ 2 and two terms

∑n
k=1 pk cos(tlXk) and

∑n
k=1 pk sin(tlXk)

are the real part and the imaginary part of the empirical characteristic function eval-
uated at m different points t = tl (t1 < t2 < · · · < tm; l = 1, · · · , m). The choice of m
is important and it can be dependent on the sample size n, but we shall discuss this
problem later.

Denote a 2m × 1 vector

(2.4) g(Xk, θ) =
(
gR(Xk, θ)

′
, gI(Xk, θ)

′)′
,

where

gR(Xk, θ) =
(
cos(t1Xk) − φR

θ (t1), . . . , cos(tmXk)− φR
θ (tm)

)′
,

gI(Xk, θ) =
(
sin(t1Xk) − φI

θ(t1), . . . , sin(tmXk) − φI
θ(tm)

)′
,

and φR
θ (tk) and φI

θ(tk) are given by (2.1) evaluated at t = tk (k = 1, · · · , m). Then we
have the conditions Eθ0 [g(X, θ0)] = 0, where Eθ0 (·) is the expectation operator with
respect to Fθ0(·) and θ0 is the vector of true parameter values.

We suppose that the convex hull Pn(θ) = {∑n
k=1 pkg(Xk, θ) | pk ≥ 0,

∑n
k=1 pk = 1}

contains 0 and set the Lagrange form as

(2.5) Ln(θ) =
n∑

k=1

log(npk) − µ[
n∑

k=1

pk − 1] − nλ
′
[

n∑
k=1

pk g(Xk, θ)] ,
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where µ is a scalar Lagrange multiplier and λ = (λ11, . . . , λ1m, λ21, . . . , λ2m)′ is the
2m × 1 vector of Lagrange multipliers. By differentiating Ln(θ) with respect to pk,

we have pk
−1 = µ + nλ

′
g(Xk, θ) (k = 1, · · · , n). Then we have µ̂ = n , and p̂k =

(1/n)[1 + λ
′
g(Xk, θ)]−1 and λ = λ(θ) is the solution of 0 =

∑n
k=1 p̂kg(Xk, θ) . When

a 2m × 2m matrix (1/n)
∑n

k=1 g(Xk, θ)g(Xk, θ)
′

is positive definite and p̂k ≥ 0, the
matrix

∂2

∂λ∂λ
′

(
−1

n

n∑
k=1

log[1 + λ
′
g(Xk, θ)]

)
=

1
n

n∑
k=1

g(Xk, θ)g(Xk, θ)
′[

1 + λ
′
g(Xk, θ)

]2
is also positive definite and λ = λ(θ) is the unique solution of

(2.6) argminλ

{
−1

n

n∑
k=1

log
[
1 + λ

′
g(Xk, θ)

]}
.

Then we define the maximum empirical likelihood (MEL) estimator for the vector of
unknown parameters θ by maximizing the log-likelihood function ln(θ), which is given
by

(2.7) ln(θ) = log
n∏

k=1

np̂k = −
n∑

k=1

log
[
1 + λ(θ)

′
g(Xk, θ)

]
.

The numerical maximization in the MEL estimation is usually done by the two-step
optimization procedure. (See Owen (2001) for the details.)

2.2 Asymptotic Properties of MEL estimation

In this subsection we shall report some asymptotic properties of the MEL estimator of
θ. For the problem of the general estimating equations Qin and Lawless (1994) have
proven the consistency and the asymptotic normality of the MEL estimator under a
set of conditions. When the number of restrictions m is fixed, we have an analogous
result in our situation.

Theorem 2.1 : Let X1, . . . , Xn are i.i.d. random variables with the stable distribution
Fθ(·) and the vector of true parameters θ0 = (α0, β0, γ0, δ0)

′
is in Int(Θ1), where Θ1 =

{(α, β, γ, δ)|ε ≤ α ≤ 1−ε, 1+ε ≤ α ≤ 2, −1 ≤ β ≤ 1, ε ≤ γ ≤ M, −M ≤ δ ≤ M} with
ε being a sufficiently small positive number and M being a sufficiently large positive
number. Let the MEL estimator be θ̂n = argmaxθRn(θ), where

(2.8) Rn(θ) =

{
n∏

k=1

npk|
n∑

k=1

pkg(Xk, θ) = 0, pk ≥ 0,
n∑

k=1

pk = 1

}
,

a 2m × 1 vector of restrictions g(·, ·) is defined by (2.4) and the Lagrange multiplier
vector λ̂n is the solution of

(2.9)
1
n

n∑
k=1

g(Xk, θ̂n)

1 + λ̂
′
ng(Xk, θ̂n)

= 0 .

Then as n → +∞

(2.10)
√

n

[
θ̂n − θ0

λ̂n

]
d−→ N4+2m

[
(

0
0

), (
Ωm O
O Γm

)

]
,
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where we define a 2m × 1 vector Φθ =
(
φR

θ (t1), . . . , φR
θ (tm), φI

θ(t1), . . . , φ
I
θ(tm)

)′
,

a 2m×4 matrix Bm(θ) = (∂Φθ,i

∂θj
), a 2m×2m matrix Am(θ) = Eθ

[
g(X1, θ)g(X1, θ)

′]
,

and

Ωm = [B
′
m(θ0)Am(θ0)−1Bm(θ0)]−1,

Γm = Am(θ0)−1[Am(θ0)− Bm(θ0)ΩmBm(θ0)
′
]Am(θ0)−1.

The (i,j)th elements of Am(θ) are given by

1
2

{
φR

θ (ti + tj) + φR
θ (ti − tj)

}
− φR

θ (ti)φR
θ (tj) (1 ≤ i, j ≤ m) ,

1
2

{
φI

θ(ti + tj)− φI
θ(ti − tj)

}
− φR

θ (ti)φI
θ(tj) (1 ≤ i ≤ m, m + 1 ≤ j ≤ 2m) ,

1
2

{
φI

θ(ti + tj) + φI
θ(ti − tj)

}
− φI

θ(ti)φ
R
θ (tj) (m + 1 ≤ i ≤ 2m, 1 ≤ j ≤ m) ,

−1
2

{
φR

θ (ti + tj) − φR
θ (ti − tj)

}
− φI

θ(ti)φ
I
θ(tj) (m + 1 ≤ i, j ≤ 2m) ,

respectively.

This result is based on Qin and Lawless (1994) (their Lemma 1 and Theorem 1)
and its proof is to check their sufficient conditions in our situation. We need some
regularity conditions on the functions g(·, ·) with respect to θ and use a neighborhood
NB(θ0) of θ0 with some smoothness conditions. But it is rather straightforward to
verify these conditions in our situation. For instance, in our case we can utilize the
bounded condition that for ∀θ ∈ NB(θ0) we have

‖g(x, θ)‖ =

[
m∑

l=1

(
cos(tlx) − φR

θ (tl)
)2

+
m∑

l=1

(
sin(tlx)− φI

θ(tl)
)2
]1/2

≤ 2
√

2m .

Also it is possible to show directly that ∂g(x, θ)/∂θj and ∂2g(x, θ)/∂θj∂θk are continu-
ous in NB(θ0). Since we take a compact set Θ1(·), both ∂g(x, θ)/∂θj and ∂2g(x, θ)/∂θj∂θk

are bounded in NB(θ0) (NB(θ0) ⊂ Θ1).
Let the density function of stable distribution be fθ(x) with the vector of unknown

parameters θ = (α, β, γ, δ)
′
. By using the similar arguments as DuMouchel (1973), we

can show that fθ(x) has the following properties :
(i) : For x ∈ R, fθ(x) as a function of θ is continuous in Int(Θ1) and for any θ ∈ Int(Θ1)
it is twice continuously differentiable.
(ii) : Since for any θ ∈ Int(Θ1),

(2.11)
∂2

∂θ∂θ
′

∫ ∞

−∞
fθ(x)dx =

∫ ∞

−∞
∂2fθ(x)
∂θ∂θ

′ dx ,

then Eθ

[
∂ log fθ(X)

∂θ

]
= 0 and

(2.12) I(θ) = Eθ

[(
∂ log fθ(X)

∂θ

)(
∂ log fθ(X)

∂θ

)′]
= −Eθ

[
∂2 log fθ(X)

∂θ∂θ
′

]
.

(iii) : For any θ ∈ Int(Θ1), the Fisher Information matrix I(θ) is nonsingular.
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Under these conditions we shall consider the asymptotic efficiency of the MEL esti-
mator. By using the notation Ωm in Theorem 2.1, it is possible to show that for any
non-zero vector u ∈ R4 we have the inequality

(2.13) u′I(θ0)−1u ≤ u′Ωmu .

This implies that the asymptotic covariance of the MEL estimator in Theorem 2.1 is
larger than the Cramér-Rao lower-bound in general and it is asymptotically inefficient
when the number of restrictions m is fixed.

However, it is possible to consider the situation when m is dependent on the sample
size n . In particular, we take the case when m = m(n) = [n

1
3
−η ] (or m(n) = [n

1
6
−η])

where [c] is the largest integer not exceeding c and η is any positive number with
0 < η < 1/3 (or 0 < η < 1/6) . Also in order to impose m restrictions in the form
of (2.4) we set tl = Kl/m (l = 1, 2, · · · , m) with some positive constant K. Then
we have the consistency, the asymptotic normality, and the asymptotic efficiency of
the MEL estimator as stated in the next theorem. The proof is lengthy and given in
Mathematical Appendix.

Theorem 2.2 : We assume that X1, . . . , Xn are i.i.d. random variables with the
stable distribution Fθ(·) and the true parameter vector θ0 is in Int(Θ2), where Θ2 =
{(α, β, γ, δ)|ε ≤ α ≤ 2, −1 ≤ β ≤ 1, ε ≤ γ ≤ M, −M ≤ δ ≤ M} with ε being a
sufficiently small positive number and M being a sufficiently large positive number.
The 2m×1 restriction functions g(·, ·) are defined by (2.4) at tl = Kl/m (l = 1, · · · , m)
with some positive constant K and we take m = m(n) = [n

1
3
−η] with 0 < η < 1/3 .

Also we define θ̂n = argmaxθRn(θ) and

Rn(θ) =

{
n∏

k=1

npk :
n∑

k=1

pkg(Xk, θ) = 0, pk ≥ 0,
n∑

k=1

pk = 1

}
.

Then

(2.14) θ̂n
p−→ θ0 .

When we restrict the parameter space such that the vector of true parameter values θ0

is in Int(Θ1) and Θ1 is the same as in Theorem 2.1, then

(2.15)
√

n(θ̂n − θ0)
d−→ N4[0, JK(θ0)] ,

and
lim

K→+∞
JK(θ0) = I(θ0)−1,

where JK(θ0) = limn→∞ Ωm(θ0) and Ωm = [B
′
m(θ0)Am(θ0)−1Bm(θ0)]−1 evaluated

at the points tl = Kl/m (l = 1, · · · , m) with K > 0 .

There are two important special cases to be mentioned. First, when α = 1 (i.e. the
Cauchy distribution) and β �= 0, we have the situation that for any finite t we have

(2.16) lim
α→1

|∂
2φθ(t)
∂α2

| → +∞
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and the convergence rate of α̂n (the estimator of α) to 1 could be different from
√

n.
When α = 2 and β �= 0, we have the situation that for any finite t

(2.17) lim
α→2

∂φθ(t)
∂β

= lim
α→2

∂2φθ(t)
∂β2

= 0 .

Then the vector of unknown parameters θ is unidentified and the limiting informa-
tion matrix is degenerate. In these boundary cases it is not still clear if we have the
asymptotic normality and the asymptotic efficiency of the MEL estimator.

2.3 Empirical Likelihood Testing

It is possible to develop the empirical likelihood ratio statistics and testing procedures
for the parameters of stable distribution which have the desirable asymptotic properties
as stated in the next theorem. The brief proof is given in Mathematical Appendix.

Theorem 2.3 : In addition to the assumptions of Theorem 2.2, we take m = m(n) =
[n

1
6
−η] with 0 < η < 1/6 and we restrict the parameter space such that the vector of

true parameter values θ0 is in Int(Θ1) as in Theorem 2.1.
(i) The empirical likelihood ratio statistic for testing the hypothesis H0 : θ = θ0 is
given by W1 = 2[ln(θ̂n) − ln(θ0)], where the log-likelihood function ln(θ) is given by
(2.7). Then

(2.18) W1
d−→ χ2(4)

as n −→ +∞ when H0 is true.
(ii) To test the hypothesis of the whole restrictions Eθ0 [g(X, θ0)] = 0, the likelihood
ratio statistic is given by W2 = −2ln(θ̂n). Then

(2.19)
W2 − 2m√

4m

d−→ N (0, 1)

as n → +∞ when the 2m restrictions imposed are true.

The first part of Theorem 2.3 allow us to use the empirical likelihood ratio statistic
for testing the standard hypothesis H0 as well as constructing confidence sets for pa-
rameters of θ. The second part may not be standard in the statistics literature, but it
corresponds to the testing problem of the overidentifying restrictions in the econometric
literatures since the classical study on the simultaneous equations models by Anderson
and Rubin (1950). Since the degrees of freedom L = 2m−4 in the second case becomes
large as n → +∞, we have the normal distribution as the limit 1 .

Although we have the χ2 distribution or the normal distribution as the limiting
distribution as stated in Theorem 2.3, the asymptotic distributions of the likelihood
ratio statistics are not known when the true parameters are on some boundaries of
the parameter space Θ1 . The main difficulty of this problem is the same we have
mentioned in the previous subsection for the estimation of parameters.

1 The referee has pointed out the possible relation between our results and the general Wilks phe-
nomena for the generalized empirical likelihood ratio statistics in more general situations. The latter
problem has been recently discussed by Fan et. al. (2001), Shen et. al. (1999) and Zhang and Gibels
(2003) in the statistics literature.
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3. Estimation of Lévy Processes and Estimating Equations Problem

3.1 Estimation of Lévy Processes

We consider the estimation problem of unknown parameters in the class of Lévy pro-
cesses. For any one-dimensional Lévy process Zv at a positive finite time v (> 0), it
can be represented as the sum of i.i.d. random variables Xvi . For the notational conve-
nience we take vi − vi−1 = 1 (vi = i; i = 0, 1, · · · , n) and write Zn =

∑n
i=1 Xi . Then it

has been well-known that the one-dimentional Lévy processes {Zv} and the infinitely
divisible distributions for the random variables {Xi} are completely determined by the
characteristic function

(3.1) φθ(t) = exp
{

ibt− a

2
t2 +

∫
R

[eitx − 1 − itxI(|x| < 1)]νc(dx)
}

,

where b and a (≥ 0) are real constants, I(·) is the indicator function, νc(·) is the Lévy
measure satisfying νc({0}) = 0 ,

(3.2)
∫
|x|>0

[|x|2 ∧ 1]νc(dx) < +∞

and c is the vector of some parameters. (See Sato (1999) for the details of the Lévy
processes and the infinitely divisible distributions.) Then the vector of unknown pa-
rameters of the infinitely divisible distributions is represented as θ = (a, b, c

′
)
′
.

For applications, we mention only three important cases of the infinitely divisible
distributions used in the recent financial economics and mathematical finance. First,
the class of stable distributions with the condition 0 < α < 2 can be characterized by
the Lévy measure

(3.3) νc(dx) =

⎧⎨⎩
c1

|x|1+α dx for x < 0
c2

|x|1+α dx for x > 0
,

where c = (c1, c2, α)
′
. We should note that although the parameterizations of c1 (> 0)

and c2 (> 0) are different from the ones appeared in Section 2 there is one-to-one
correspondence between the vectors (α, β, γ, δ) in Section 2 and (α, b, c1, c2) (see Sato
(1999) for the details).

The second case is the CGMY process introduced by Carr et. al. (2002), which
has been applied to describe the stochastic processes for financial prices. The Lévy
measure for this process has been given by

(3.4) νc(dx) = C0{I(x < 0)e−G|x| + I(x > 0)e−M |x|}|x|−(1+Y )dx ,

where the vector of parameters c = (C0, G, M, Y )
′

satisfies the conditions of C0 >

0, G ≥ 0, M ≥ 0, and Y < 2 . The characteristic function is given by

(3.5)
φθ(t) = exp{i[b + C0Γ(−Y )Y (MY −1 − GY −1)]t

+C0Γ(−Y )((M − it)Y − MY + (G + it)Y − GY )]} ,
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where the vector of parameters is given by θ = (b, C0, G, M, Y )
′
and Γ(·) is the Gamma

function.
When Y = 0, then the CGMY process is reduced to the Variance Gamma process
proposed by Madan and Seneta (1990). Miyahara (2002) has summarized the basic
properties of the CGMY process and the Variance Gamma process in a systematic
way.
Although the characteristic function given by (3.5) is continuous with respect to θ, we
can find that for any finite t

|∂φθ(t)
∂Y

| → +∞
as Y → 0 or Y → 1 . Hence we should be careful to treat these cases as we have
discussed for the class of stable distributions in Section 2.

Third example is the class of normal inverse Gaussian processes, which has been
introduced and discussed by Bandorff-Nielsen (1998). The characteristic function for
this class of distributions is given by

(3.6) φθ(t) = exp{δ[
√

α2 − β2 −
√

α2 − (β + it)2] + i µt} ,

and the vector of parameters is given by θ = (µ, α, β, δ)
′
in the present case.

In these infinitely divisible distributions it is not possible to obtain the simple form
of the density function and the parametric maximum likelihood estimation method
has computational problems except very special cases. In this respect, the maximum
empirical likelihood (MEL) method can be directly applicable and we can establish the
next result. The proof is similar to that of Theorem 2.2 and it is omitted.

Theorem 3.1 : We assume that X1, . . . , Xn are i.i.d. random variables with the
characteristic function given by (3.1), which is continuous with respect to θ, and the
Lévy measure νc is absolutely continuous with respect to the Lebesgue measure. The
true parameter vector θ0 is in Int(Θ3), and Θ3 is a compact subset such that (3.1) is
the characteristic function of the infinitely divisible distribution with non-degenerate
continuous density fθ(·). We impose 2m×1 restriction functions g(·, ·) defined by (2.4)
at tl = Kl/m (l = 1, · · · , m) with some positive constant K for the real part φR

θ (t) and
the imaginary part φI

θ(t) of φθ(t) and take m = m(n) = [n
1
3
−η] with 0 < η < 1/3 . Also

we set θ̂n = argmaxθRn(θ) and

Rn(θ) =

{
n∏

k=1

npk|
n∑

k=1

pkg(Xk, θ) = 0, pk ≥ 0,
n∑

k=1

pk = 1

}
.

Then

(3.7) θ̂n
p−→ θ0 .

Furthermore, we restrict the parameter space such that the true parameter value θ0 is
in Int(Θ4) and Θ4 is a compact subset such that I(θ0) (the Fisher information matrix)
is positive definite. Assume that φθ(t) are continuously twice-differentiable with respect
to θ and their derivatives are bounded by the integrable functions.
Then

(3.8)
√

n(θ̂n − θ0)
d−→ N [0, JK(θ0)] ,
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where limK→+∞ JK(θ0) = I(θ0)−1 and JK(θ0) is defined as in Theorem 2.2.

There can be simpler regularity conditions for the results in Theorem 3.1. Since the
Lévy measure is not necessarily a finite measure in the general case, however, a careful
analysis would be needed to impose further conditions on νc(·) .

3.2 Estimating Equations Problem

We consider a single structural equation in the econometric model (or the estimating
equation model in statistics) represented by

(3.9) y1j = h1(y2j, z1j, θ1) + uj (j = 1, · · · , n) ,

where h1(·, ·, ·) is a function, y1j and y2j are 1 × 1 and G1 × 1 (vector of) endogenous
variables, z1j is a K∗

1 × 1 vector of included exogenous variables, θ1 = (θ1k) is an
r × 1 vector of unknown parameters, and {uj} are mutually independent disturbance
terms with the infinitely divisible distribution Fθ2(·) and θ2 = (θ2k) is the vector of its
unknown parameters.

We assume that (3.9) is the first equation in a system of (1+G1) structural equations
which relate the vector of 1 + G1 endogenous variables y

′
j = (y

′
1j , y

′
2j) to the vector

of K∗ (= K∗
1 + K∗

2 ) instrumental (or exogenous) variables zj (j = 1, · · · , n), which
includes the vector of explanatory variables z1j appeared in the structural equation of
interest as (3.9). The set of explanatory (or exogenous) variables zj are often called the
instrumental variables in the econometric literatures. The restrictions we impose on
the real part and the imaginary part of the characteristic function at any m different
points of t (t1 < · · · < tm) are given by

(3.10) E
[
h2(zj)(eituj − φθ2(t))

]
= 0 (j = 1, · · · , n) ,

where h2(·) is a set of l functions of instrumental variables zj (l ≤ K∗) and θ2 =
(a, b, c

′
)
′
is the vector of unknown parameters of the infinitely divisible distributions for

the disturbance terms {uj}. Because we do not specify the structural equations except
(3.9) and we only have the limited information on the set of instrumental variables (or
instruments), we are considering the limited information estimation method 2 .

As an important application of the general methodology we are developing, we shall
consider the estimating equation problem when the disturbance terms follow the class
of stable distributions. Let θ = (θ

′
1, θ

′
2)

′
and θ1 be the vector of unknown parameters

in the estimating equations when the disturbance terms {uj} in (3.9) follow the stable
distribution Fθ2(·) with the vector of parameters θ2 = (α, β, γ, δ)

′
. The maximum

empirical likelihood (MEL) estimator for the vector of unknown parameters θ can be

2 See Chapter 12 of Anderson (2003), and Anderson and Rubin (1949) on the classical linear formu-
lation of the related problems and see Kunitomo and Matsushita (2003) for the finite sample properties
of the MEL estimator in the simple linear structural equation.
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defined by maximizing the Lagrange form

(3.11)

L∗
n(λ, θ) =

n∑
j=1

log(n pj)− µ[
n∑

j=1

pj − 1] − n
n∑

j=1

pjh
′
2(zj)

×
{

m∑
k=1

λ1k

[
cos (tk(y1j − h1(y2j, z1j, θ1))) − φR

θ2
(tk)

]

+
m∑

k=1

λ2k

[
sin (tk(y1j − h1(y2j, z1j , θ1))) − φI

θ2
(tk)

]}
,

where µ is a scalar Lagrange multiplier, λik (i = 1, 2; k = 1, · · · , m) are l × 1 vectors
of Lagrange multipliers, φR

θ2
(t) and φI

θ2
(t) are the real part and the imaginary part of

φθ2(t) as (2.4), respectively, and pj (j = 1, · · · , n) are the weighted probability functions
to be chosen. The above maximization problem is the same as to maximize
(3.12)

Ln(λ, θ) = −
n∑

j=1

log

(
1 + h

′
2(zj)

{
m∑

k=1

λ1k

[
cos(tk(y1j − h1(y2j, z1j, θ1))) − φR

θ2
(tk)

]

+
m∑

k=1

λ2k

[
sin(tk(y1j − h1(y2j, z1j, θ1))) − φI

θ2
(tk)

]})
,

where we have used the relations µ̂ = n and

(3.13)

[np̂j]−1 = 1 + h
′
2(zj)

{
m∑

k=1

λ1k

[
cos(tk(y1j − h1(y2j, z1j, θ1))) − φR

θ2
(tk)

]

+
m∑

k=1

λ2k

[
sin(tk(y1j − h1(y2j, z1j , θ1))) − φI

θ2
(tk)

]}
.

By differentiating (3.12) with respect to 2lm × 1 vector λ
′
= (λ

′
11, λ

′
21, · · · , λ

′
1m, λ

′
2m)

and combining the resulting equation with (3.13), we have the MEL estimator for the
vector of parameters θ. Because we have r+4 parameters and the number of restrictions
is 2lm, the degrees of overidentifying restrictions is given by

(3.14) L = 2lm − r − 4 ,

where we assume that L > 0 .

In our formulation of the present problem the restrictions of (2.4) in Section 2 can
be interpreted as the simplest case of (3.10) in this section when r = 0, l = 1, and
h2(x) = x. Also if we set yj = y1j (we do not have any y2j), xj = z1j (= zj) (j =
1, · · · , n), and the vector of xj are exogenous, then we have the nonlinear regression
model with the infinitely divisible disturbances or the stable disturbances.

More generally, the estimation problem of structural equations have been discussed
under the standard moment conditions on disturbance terms and the generalized mo-
ment method by Hansen (1982) or the estimating equation method by Godambe (1960).
The standard statistical estimation methods have been usually applied 3 . By applying
the similar arguments as in Section 2, it may be possible to establish the asymptotic re-
sults as Theorem 2.2, Theorem 2.3 and Theorem 3.1 in the general estimating equations
problem under a set of regularity conditions.

3 See Hayashi (2000), for the details of standard results in the recent econometrics literatures.
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4. Simulation Results

In order to examine the actual performance of our estimation procedure, we have
done a set of Monte Carlo simulations. In the first experiment we have fixed γ = 1
and δ = 0, and simulated 1,000 random numbers which follow the stable distribution
by using the method of Chamber, Mallows and Stuck (1976). After some experiments,
we imposed the constraints on the empirical characteristic functions at the points t =
0.1, 1.1, 2.1, 3.1, 4.1. By using the restrictions at only these five points, we can
get relatively accurate estimation results when the true parameter values are (α, β) ∈
(0, 1.8)× [−1, 1]. For the case of (α, β) ∈ [1.8, 2)× [−1, 1], however, we sometimes have
slow convergences when we had imposed the restrictions only at near to the origin as
t = 0.1.

From our experiments, when we have fat tails in the empirical study of returns
sometimes encountered in financial economics and the true value α is near to 2, it
may be enough to use the restrictions on the empirical characteristic functions at t =
0.6, 1.1, 2.1, 3.1, 4.1 . When γ0 �= 1, δ0 �= 0, it is computationally efficient to use the
iterative procedure as

1. First we obtain a preliminary estimate by using an estimation method as McCul-
loch (1986) and obtain γ̂(0), δ̂(0) .

2. Apply the empirical likelihood method to the standardized data
(x1 − δ̂(0))/γ̂(0), . . . , (xn − δ̂(0))/γ̂(0) , and set γ̂(1), δ̂(1) .

3. We set γ̂ = γ̂(0)γ̂(1), δ̂ = δ̂(0) + δ̂(1)γ̂(0) for the final estimates of the parameters
γ and δ .

Although in our experiments we have set the sample size n = 1, 000, we can estimate
the key parameters satisfactorily even when n ≥ 100 by imposing the restrictions at
only 5 points.

We repeated our simulations 500 times in each case and calculated the average,
the maximum, the minimum, and RMSE as reported in Table 1. Then we have com-
pared the sample variance with the asymptotic variance for the parametric maximum
likelihood estimator which were obtained numerically by DuMouchel (1971) and Nolan
(2001). We define the efficiency of our estimator as the ratio of the asymptotic vari-
ance calculated from the inverse of the Fisher information and the sample variance
of estimator in our simulations. Then we have summarized our numerical results on
efficiency in Table 2 and we found that there are not many extreme cases where we
have low efficiency and our estimation method give reasonable values in most cases.

When α = 1 and the parameter values are near to the boundaries, we have found
that some instability in estimation occurs and the estimation results often depend on
the choice of the initial conditions. When α = 2 and β �= 0, there is an identifica-
tion problem and some instability in numerical computations would occur without any
further restrictions on the parameter space.

As the second simulation we have examined the actual performance of the empirical
likelihood estimation for the regression model with the class of stable disturbance terms,
which is defined by

(4.1) Yj = θ1Xj + uj (j = 1, · · · , n),

13



Table 1: Simulation Results of α

We set γ = 1.0 and δ = 0.0 in our simulations. The values of average, maximum, minimum, and RMSE

are calculated from the estimates for each coefficients.

(α, β) Average Max Min RMSE
(1.95,0.0) 1.9492 2.0855 1.7983 0.0460
(1.80,0.0) 1.8021 1.9638 1.6050 0.0618
(1.65,0.0) 1.6502 1.8155 1.4717 0.0619
(1.50,0.0) 1.5023 1.6718 1.3238 0.0592
(1.30,0.0) 1.3045 1.4521 1.1382 0.0534
(1.25,0.0) 1.2539 1.4151 1.1017 0.0521
(1.00,0.0) 1.0018 1.1301 0.8880 0.0436
(0.80,0.0) 0.8004 0.9159 0.6929 0.0365
(1.50,0.5) 1.5037 1.6575 1.3516 0.0601
(1.10,0.5) 1.1052 1.2382 0.9829 0.0455
(1.00,0.5) 1.0024 1.1662 0.8849 0.0406
(0.60,0.5) 0.6009 0.6850 0.5146 0.0275
(0.50,0.5) 0.4996 0.5819 0.4340 0.0240

Table 2: Efficiency
We set γ = 1.0 and δ = 0.0 in our simulations. The values in Table 2 are the efficiencies as the ratio

of the asymptotic variance and the sample variance for each coefficients α , β , γ , δ in simulations.

(α, β) α β γ δ

(1.65,0.0) 0.794 0.973 0.986 0.899
(1.50,0.0) 0.851 1.052 0.932 0.985
(1.30,0.0) 0.904 0.966 0.926 0.914
(1.25,0.0) 0.908 0.924 0.906 0.876
(1.00,0.0) 0.949 0.878 0.877 0.904
(0.80,0.0) 0.981 0.813 0.919 0.865
(1.50,0.5) 0.820 0.779 0.929 0.897
(1.10,0.5) 0.945 0.824 0.860 0.890
(1.00,0.5) 0.966 0.783 0.877 0.890
(0.60,0.5) 1.015 0.590 1.004 0.863
(0.50,0.5) 0.987 0.516 1.054 0.815
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where θ1 is the unknown coefficient, Yj is the dependent variable, Xj is the explanatory
variable, and uj is the disturbance term with the stable distribution. We have set the
parameter values β = 0, γ = 1, δ = 0 in the class of stable distributions and simulated
{Xj} such that they are a sequence of i.i,.d. random variables which follow the log-
normal distribution LN (0, 1). We have repeated our simulations 500 times for the
sample size n (= 3, 000) with θ1 = 1.0, and calculated the average, the maximum, the
minimum, and the RMSE in Table 3.

When α = 1.5 we also have calculated the standard least squares estimator for
the coefficient parameter θ1 . The average and its RMSE were 1.0015 and 0.0561,
respectively, while the maximum and the minimum were 1.4499 and 0.5873, respectively.
It seems that the RMSE of the least squares estimator is more than twice of the MEL
estimator when 1 < α < 2 in our simulations. In addition to this favorable result on
our estimation method, the least squares estimation often fails when 0 < α < 1 in our
limited experiments. On the other hand, we did not have any convergence problem
in the MEL estimation as long as we have enough data size in the simulations. The
MEL estimation procedure for the regression model with the stable disturbances has
reasonable performances in all cases of our simulations.

Table 3: Simulation Results for Regression
We set β = δ = 0.0 and set θ = (θ1, α, γ)

′
in our simulations. The values of average, maximum,

minimum, and RMSE of the MEL estimates are calculated from the estimates for each coefficients.

(α, γ, θ1)=(0.6,1.0,1.0) α γ θ1

Average 0.6010 0.9969 1.0009
RMSE 0.0157 0.0412 0.0115
Max 0.6451 1.1429 1.0354
Min 0.5525 0.8509 0.9673
(α, γ, θ1)=(1.5,1.0,1.0) α γ θ1

Average 1.4998 1.0013 1.0010
RMSE 0.0329 0.0222 0.0192
Max 1.5933 1.0708 1.0539
Min 1.4126 0.9386 0.9373

5. Conclusions

This paper first develops a new parameter estimation method of stable distribu-
tions based on the empirical likelihood approach. We have shown that we can apply
the empirical likelihood approach to the estimation problem of stable distributions and
the computational burden is not heavy in comparison with the parametric maximum
likelihood estimation. The maximum empirical likelihood (MEL) estimator for the pa-
rameters of stable distributions has some desirable asymptotic properties; it has the
consistency, the asymptotic normality, and the asymptotic efficiency when the num-
ber of restrictions is large. Also it is possible to develop the empirical likelihood ratio
statistics for the parameters of stable distributions which have the desirable asymp-
totic property such as the asymptotic χ2−distribution. Also we can construct a test
procedure for the null-hypothesis of restrictions imposed and it is the same as the test
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of overidentifying conditions in the econometrics literature.
Second, it is rather straightforward to extend our estimation method for unknown

parameters of the stable distributions to the estimation of the general Lévy processes
and the infinitely divisible distributions. It is also possible to apply it to the esti-
mating equations problem with stable and infinitely divisible disturbance terms. We
have shown that it is possible to estimate both the parameters of equations and the
parameters of the distributions for disturbances at the same time by our method. It
seems that it is not easy to solve this estimation problem by the conventional methods
proposed in the past studies and in this sense our estimation method developed has
some advantages over other methods.

Finally, we should mention that our estimation method is so simple that the re-
sults can be extended to several directions. One obvious direction is to extend our
method to the multivariate infinitely divisible distributions and it is straightforward to
do it for the class of symmetric stable distributions. Although we have assumed that
Xk (k = 1, · · · , n) are a sequence of i.i.d. random variables in this paper, there are many
interesting applications when they are dependent. Because there have been growing in-
terests on the applications of the back-ground driving Lévy processes (BDLP) financial
applications (Bandorff-Nielsen et. al. (2001)), these problems are under our current
investigations

6. Mathematical Appendix

In this appendix we give the proofs of Theorem 2.2 and Theorem 2.3 in Section 2.
In our proof we have utilized some ideas of Kitamura et. al. (2001) and Hjort et. al.
(2004) although their problem and formulation are quite different from ours. We first
show the consistency of the MEL estimator, and then prove its asymptotic normality
and asymptotic efficiency when m is large. Then a key lemma needed for the proof of
Theorem 2.2 will be given and we utilize the proof of Theorem 2.2 to show Theorem
2.3. In our proofs we take a compact set Θ for the parameter space and we assume
that the vector of true parameters θ0 is in Int(Θ) and each elements of Am(θ) and
Bm(θ) are bounded.

Proof of Theorem 2.2 :
[i] Consistency: We take a sufficiently large K (> 0) and set m = m(n) = [n

1
3
−ε],

0 < ε < 1/3, tl = K(l/m) (l = 1, . . . , m) in (2.4). Define a criterion function by

(6.1) Gn(θ) = −1
n

n∑
k=1

log[1 + Kλ
′
(θ)g(Xk, θ)] ,

where the 2m restrictions are given by g(Xk, θ) = (cos(t1Xk)−φR
θ (t1), . . . , cos(tmXk)−

φR
θ (tm), sin(t1Xk)−φI

θ(t1), . . . , sin(tmXk)−φI
θ(tm) )′ and the Lagrange multipliers sat-

isfy the equation as (2.9). Also define a function

u(θ) =
KEθ0 [g(X1, θ)]

1 + K‖Eθ0 [g(X1, θ)]‖ .

We also define the set of integers by N = {n|m(n) ≥ 2}. Then for any θ �= θ0 and
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n ∈ N, we have

(6.2) Eθ0 [Ku
′
(θ)g(X1, θ)] = K2

m∑
l=1

[(
φR

θ0
(tl)− φR

θ (tl)
)2

+
(
φI

θ0
(tl) − φI

θ(tl)
)2
]

1 + K‖Eθ0 [g(X1, θ)]‖ > 0 .

For any θ �= θ0, we take a sufficiently small δ > 0, then for n ∈ N we have
Eθ0 [supθ∗∈NB(θ0,δ)−Ku

′
(θ∗)g(X1, θ

∗)] < 0, where NB(θ0, δ) is an open ball with center

θ0 and radius δ. Also supθ∈Θ |n− 1
3
+ ε

2 Ku
′
(θ)g(X1, θ)| ≤ n− 1

3
+ ε

2 2K
√

2m and it goes to
0 as n → +∞. By using Taylor’s Theorem, there exists a t ∈ (0, 1) such that

− log
[
1 + n− 1

3
+ ε

2 Ku
′
(θ)g(X1, θ

]
= −n− 1

3
+ ε

2 Ku
′
(θ)g(X1, θ)+

n− 2
3
+ε(Ku

′
(θ)g(X1, θ))2

2[1 + n− 1
3
+ ε

2 tKu′(θ)g(X1, θ)]2

and then
(6.3)

n
1
3
− ε

2Eθ0

{
sup

θ∗∈NB(θ0,δ)
− log

[
1 + n− 1

3
+ ε

2 Ku
′
(θ∗)g(X1, θ

∗)
]}

≤ Eθ0

[
sup

θ∗∈NB(θ0,δ)
−Ku

′
(θ∗)g(X1, θ

∗)

]
+ Eθ0

{
sup

θ∗∈NB(θ0,δ)

n− 1
3
+ ε

2 (Ku
′
(θ∗)g(X1, θ

∗))2

2[1 + tn− 1
3
+ ε

2 Ku′(θ∗)g(X1, θ
∗)]2

}
.

Since n− 1
3
+ ε

2 [Ku
′
(θ)g(X1, θ)]2 ≤ 8K2n− 1

3
+ ε

2 m and it goes to 0 as n → ∞, the sec-
ond term of (6.3) converges to 0. By using (6.2), we can show that for any θ �= θ0

and sufficiently small δ > 0, there exists n(θ, δ) such that for n ≥ n(θ, δ) we have
n

1
3
− ε

2Eθ0{supθ∗∈NB(θ0,δ) − log[1 + n− 1
3
+ ε

2 Ku
′
(θ∗)g(X1, θ

∗)]} < 0. Since the set Θ \
NB(θ0, δ) is compact, there exist L ∈ B and θ1, θ2, . . . , θL such that Θ \NB(θ0, δ) ⊂⋃L

α=1 NB(θα, δ). Then for any n ≥ n(θα, δ) we have

(6.4)

P

(
1
n

n∑
k=1

sup
θ∗∈NB(θα,δ)

− log[1 + n− 1
3
+ ε

2 Ku
′
(θ∗)g(Xk, θ

∗)]

>
1
3
n− 1

3
+ ε

2Eθ0 [ sup
θ∗∈NB(θα,δ)

−Ku
′
(θ∗)g(X1, θ

∗)]

)

≤ P

(∣∣∣∣∣ 1n
n∑

k=1

sup
θ∗∈NB(θα,δ)

− log[1 + n− 1
3
+ ε

2 Ku
′
(θ∗)g(Xk, θ

∗)]

−Eθ0{supθ∗∈NB(θα,δ) − log[1 + n− 1
3
+ ε

2 Ku
′
(θ∗)g(X1, θ

∗)]}
∣∣∣∣∣

> −1
6
n− 1

3
+ ε

2 Eθ0 [ sup
θ∗∈NB(θα,δ)

−Ku
′
(θ∗)g(X1, θ

∗)]

)

≤ 62

n
1
3
+ε

Varθ0{ supθ∗∈NB(θα,δ) − log[1 + n− 1
3
+ ε

2 Ku
′
(θ∗)g(X1, θ

∗)]}
(Eθ0 [supθ∗∈NB(θα,δ) −Ku′(θ∗)g(X1, θ

∗)])2
.

We notice that the denominator of the right-hand side (RHS) of (6.4) does not converges
to zero because of (6.2). Then by using the fact that RHS of (6.4) goes to 0, there
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exists n̄(θα, δ) ∈ N such that for any n ≥ n̄(θα, δ) it is less than δ/2K (α = 1, . . . , L).
Hence for any n ≥ max1≤β≤L n̄(θβ , δ) we have

P

(
sup

θ∗∈Θ\NB(θ0,δ)

1
n

n∑
k=1

− log[1 + n− 1
3
+ ε

2 Ku
′
(θ∗)g(Xk, θ

∗)]

>
1
3
n− 1

3
+ ε

2 max
1≤β≤L

Eθ0 [ sup
θ∗∈NB(θβ,δ)

−Ku
′
(θ∗)g(X1, θ

∗)]

)
< δ

2 .

We notice that λ(θ̂n) is the minimum of (2.6) and then we have the relation
(6.5)

P

⎛⎝ sup
θ∗∈Θ\NB(θ0,δ)

Gn(θ∗) >
1
3
n− 1

3
+ ε

2 max
1≤β≤L

Eθ0 [ sup
θ∗∈NB(θβ,δ)

−Ku
′
(θ∗)g(X1, θ

∗)]

⎞⎠ <
δ

2
.

Now we investigate the stochastic order of the Lagrange multipliers and we write
them at the true value as λ(θ0) = ‖λ(θ0)‖ξ, where ξ is the 2m × 1 unit vector. By
using the fact that the Lagrange multipliers are the solution of

(6.6)
1
n

n∑
k=1

Kg(Xk, θ0)
1 + Kλ

′
(θ0)g(Xk, θ0)

= 0 ,

we have

(6.7)

0 =
1
m

∥∥∥∥∥ 1
n

n∑
k=1

Kg(Xk, θ0)
1 + Kλ

′
(θ0)g(Xk, θ0)

∥∥∥∥∥
≥ 1

m

∣∣∣∣∣ 1nξ
′
(

K
n∑

k=1

g(Xk, θ0) − ‖λ(θ0)‖
n∑

k=1

K2g(Xk, θ0)ξ
′
g(Xk, θ0)

1 + K‖λ(θ0)‖ξ′g(Xk, θ0)

)∣∣∣∣∣
≥ ‖λ(θ0)‖

1 + K‖λ(θ0)‖max1≤k≤n ‖g(Xk, θ0)‖
1
n

n∑
k=1

K2

m
ξ
′
g(Xk, θ0)g(Xk, θ0)

′
ξ

−
∣∣∣∣∣ 1n

n∑
k=1

K

m
ξ

′
g(Xk, θ0)

∣∣∣∣∣ .

We use the inequality Eθ0 [
∣∣∣(1/n)

∑n
k=1 ξ

′
g(Xk, θ0)

∣∣∣2] ≤ (1/n)Eθ0[‖g(X1, θ0)‖2], which

is less than m/n. Then we have the relation that
∣∣∣(1/n)

∑n
k=1 ξ

′
g(Xk, θ0)

∣∣∣ = Op(
√

m/n) .

We define a 2m × 2m matrix D(n) = (Dij(n)) by

(6.8) D(n) =
1
n

n∑
k=1

K2

m

{
g(Xk, θ0)g(Xk, θ0)

′ − Eθ0 [g(Xk, θ0)g(Xk, θ0)
′
]
}

.

Then by using the Markov inequality we have the conditions that for any ε > 0
P(|Dij(n)| ≥ ε) ≤ c1(1/

√
n)2(1/m)2 and hence P(max1≤i,j≤n |Dij(n)| ≥ ε) ≤ c2(1/n),

where ci (i = 1, 2) are some positive constants 4 . Thus they converge to zero in prob-
ability as n −→ +∞. Also by using the similar arguments as (6.34) and Lemma A.1
below (we can take a sequence of nonsingular matrices as W̃ ), we can show that the
characteristic roots of 2m× 2m matrix Σm(θ0) = (K2/m)Eθ0 [g(Xk, θ0)g(Xk, θ0)

′
] are

4 We are adopting the arguments used in Section 5 of Hjort et. al. (2004).
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positive and bounded both from the above and zero. Because
‖λ(θ0)‖/[1+K‖λ(θ0)‖max1≤k≤n ‖g(Xk, θ0)‖] = Op(

√
m/n) and max1≤k≤n ‖g(Xk, θ0)‖ ≤

2
√

2m = O(
√

m), we find the key condition

(6.9) ‖λ(θ0)‖ = Op(
√

m

n
)

and

(6.10) Gn(θ0) ≥ −1
n

n∑
k=1

Kλ
′
(θ0)g(Xk, θ0) = −K‖λ(θ0)‖ 1

n

n∑
k=1

ξ
′
g(Xk, θ0) ,

which is of the order Op(
√

m/n)Op(
√

m/n) = op(n− 1
3 ). Then there exists n′ ∈ N such

that for any n ≥ n
′
we have

(6.11) P
(
n

1
3
− ε

2 Gn(θ0) < n− ε
2 max

1≤β≤L
Eθ0 [ sup

θ∗∈NB(θβ,δ)
−Ku

′
(θ∗)g(X1, θ

∗)]
)

<
δ

2
.

Furthermore, by noting the fact that n
1
3
− ε

2 Gn(θ̂n) = supθ∗∈Θ n
1
3
− ε

2 Gn(θ∗) (which is
greater than n

1
3
− ε

2 Gn(θ0)) and using (6.11), we can evaluate

(6.12) P
(
n

1
3
− ε

2 Gn(θ̂n) < n− ε
2 max

1≤β≤L
Eθ0 [ sup

θ∗∈NB(θβ,δ)
−Ku

′
(θ∗)g(X1, θ

∗)]
)

<
δ

2
.

Hence by combining (6.5) and (6.12), we have the condition P
(
θ̂n /∈ NB(θ0, δ)

)
< δ ,

which implies that θ̂n
p−→ θ0 as n → +∞.

(ii)Asymptotic Normality : We consider the first order condition of the criterion
function ∂Gn(θ̂n)/∂θ = 0 . Then by expanding −∂Gn(θ0)/∂θ around at θ̂n = θ0, we
have

(6.13) −√
n

∂Gn(θ0)
∂θ

=
∂2Gn(θ†

n)
∂θ∂θ

′
√

n(θ̂n − θ0) ,

where we have taken ‖θ†
n−θ̂n‖ ≤ ‖θ̂n−θ0‖. In order to show the asymptotic normality

of the random vector −√
n∂Gn(θ0)/∂θ, we write

(6.14)

−√
n∂Gn(θ0)

∂θ
=

√
n

1
n

n∑
k=1

K

1 + Kλ
′(θ0)g(Xk, θ0)

(
∂g(Xk, θ0)

∂θ
′

)′

λ(θ0)

=
√

n
1
n

n∑
k=1

K

1 + Kλ
′
(θ0)g(Xk, θ0)

(
−∂Φθ0

∂θ
′

)′

λ(θ0) .

By rewriting (6.6) with respect to the Lagrange multipliers, we have

(6.15) 0 =
1
n

n∑
k=1

K

m
g(Xk, θ0)−

{
1
n

n∑
k=1

K2

m
g(Xk, θ0)g(Xk, θ0)

′
}

λ(θ0) + r1n ,

where we set the remainder term

r1n =
1
n

n∑
k=1

K

m

g(Xk, θ0)(Kλ
′
(θ0)g(Xk, θ0))2

1 + Kλ
′
(θ0)g(Xk, θ0)

.
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Because max1≤k≤n |Kλ
′
(θ0)g(Xk, θ0)| ≤ K‖λ(θ0)‖max1≤k≤n ‖g(Xk, θ0)‖ is of the or-

der Op(
√

m/n)O(
√

m) = op(1), we have max1≤k≤n 1/[|1+Kλ
′
(θ0)g(Xk, θ0)|] = Op(1).

Also there exists a positive constant c3 such that ‖Bm(θ)‖ ≤ c3
√

m. By using these
evaluations, we find

‖r1n‖ ≤ max
1≤k≤n

(
K3/[|1 + Kλ

′
(θ0)g(Xk, θ0)|]

)
(1/m)‖λ(θ0)‖2 max

1≤k≤n
‖g(Xk, θ0)‖3 ,

which is of the order Op(m−1)Op (m/n) O(m3/2) = Op(m3/2/n). Then we can approx-
imate the random vector −√

n∂Gn(θ0)/∂θ as
(6.16)

−√
n∂Gn(θ0)

∂θ

=
√

n

{
1
n

n∑
k=1

K

1 + Kλ
′
(θ0)g(Xk, θ0)

(
−∂Φθ0

∂θ
′

)′}
S−1

n,θ0

{
1
n

n∑
k=1

K

m
g(Xk, θ0)

}
+ r2n ,

where

Sn,θ =
1
n

n∑
k=1

K2

m
g(Xk, θ)g(Xk, θ)

′

and r2n is the remainder term. By applying the similar arguments to r1n, we find that
r2n = op(1) and then we can further approximate (6.16) as

(6.17) −√
n

∂Gn(θ0)
∂θ

=
1√
n

n∑
k=1

K

(
−∂Φθ0

∂θ
′

)′

S−1
n,θ0

K

m
g(Xk, θ0) + op(1) .

In order to show the asymptotic normality of (6.17), for any vector ζ ∈ R4 we define a
set of random variables Ymk (k = 1, . . . , n) by

Ymk = ζ
′
K

(
−∂Φθ0

∂θ
′

)′

{Eθ0(Sn,θ0)}−1 K

m
g(Xk, θ0) .

Then we find that for any η > 0

(6.18)

∑n
k=1 Eθ0 [Y

2
mk : |Ymk| > η (

∑n
k=1 Varθ0(Ymk))

1/2]∑n
k=1 Varθ0(Ymk)

=
Eθ0

[
(Ym1/

√
m)2mI

(
|Ym1/

√
m| > η ((n/m)Varθ0(Ym1))

1/2
)]

Varθ0(Ym1)
→ 0

and

(6.19) Varθ0(Ym1) =
K2

m
ζ

′
(
−∂Φθ0

∂θ
′

)′
{Eθ0 (Sn,θ0)}−1

(
−∂Φθ0

∂θ
′

)
ζ

In the above derivation we have used several evaluation of stochastic orders, which are
similar to the previous ones. By applying the Lindeberg-type condition for the central
limit theorem, we can prove that for any vector ζ ∈ R4

(6.20)
1√
n

n∑
k=1

ζ
′
K

(
−∂Φθ0

∂θ
′

)′

S−1
n,θ0

K

m
g(Xk, θ0)

d−→ N (0, ζ
′
JK(θ0)ζ) ,
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where the variance-covariance matrix is given by
JK(θ0) = limn→∞ Bm(θ0)

′
Am(θ0)−1Bm(θ0). (See Lemma A.1 below.)

Because the vector ζ is arbitrary, we use the Cramér-Wold device to obtain that
−√

n∂Gn(θ0)/∂θ converges to the normal distribution with the variance-covariance
matrix JK(θ0) as n −→ +∞.

Next for the second derivatives we shall show

(6.21)
∂2Gn(θ†

n)
∂θ∂θ

′ = −JK(θ0) + op(1) .

In order to do it, we first take a compact set around the true vector θ0 as NB(θ0) =
{θ|‖θ − θ0‖ ≤ n−1/3} and the Lagrange multiplier vector λ(θ) satisfying

(6.22)
1
n

n∑
k=1

Kg(Xk, θ)
1 + Kλ(θ)′g(Xk, θ)

= 0 .

Then we need to consider each terms of the second derivatives and evaluate their
stochastic orders, which are given by

(6.23)

∂2Gn(θ)

∂θ∂θ
′ =

K2

n

n∑
k=1

(
−∂Φθ/∂θ

′)′
λ(θ)λ

′
(θ)
(
−∂Φθ/∂θ

′)
[1 + Kλ

′
(θ)g(Xk, θ)]2

+
K2

n

n∑
k=1

(
−∂Φθ/∂θ

′)′
λ(θ)g(Xk, θ)

′ (
∂λ(θ)/∂θ

′)
[1 + Kλ

′
(θ)g(Xk, θ)]2

− K

n

n∑
k=1

(
−∂Φθ/∂θ

′)′ (
∂λ(θ)/∂θ

′)
1 + Kλ

′
(θ)g(Xk, θ)

− K

n

n∑
k=1

2∑
i=1

m∑
l=1

λil(θ)(∂2g(i−1)m+l(Xk, θ)/∂θ∂θ
′
)

1 + Kλ
′
(θ)g(Xk, θ)

,

where g(Xk, θ) = (gl(Xk, θ)) (k = 1, · · · , n).
There are some complications in our evaluations partly because we have the 3rd term
involving the derivatives of the Lagrange multipliers. By differentiating (6.22) with
respect to θ, we have the relation
(6.24)

Tn(θ)
∂λ(θ)
∂θ

′ =
1
n

n∑
k=1

K

m

(
−∂Φθ/∂θ

′)
1 + Kλ

′
(θ)g(Xk, θ)

− 1
n

n∑
k=1

K2

m

g(Xk, θ)λ
′
(θ)
(
−∂Φθ/∂θ

′)
(1 + Kλ

′
(θ)g(Xk, θ))2

,

where we define a 2m × 2m random matrix Tn(θ) by

Tn,θ =
1
n

n∑
k=1

K2

m

g(Xk, θ)g(Xk, θ)
′

[1 + Kλ
′
(θ)g(Xk, θ)]2

.

Then it is straightforward to show that the second term of LHS of (6.24) is of the
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smaller order than the first term because it is dominated by

sup
θ∈NB(θ0)

∥∥∥∥∥∥∥
K2

n

n∑
k=1

(
−∂Φθ/∂θ

′)′
λ(θ)g(Xk, θ)

[1 + Kλ
′
(θ)g(Xk, θ)]2

∥∥∥∥∥∥∥
≤ supθ∈NB(θ0)

{
K2 max1≤k≤n

1

[1+Kλ
′
(θ)g(Xk,θ)]2

∥∥∥∥∂Φθ

∂θ
′

∥∥∥∥ ‖λ(θ)‖max1≤k≤n ‖g(Xk, θ)‖
}

,

which can be evaluated as op(1). Then we find that the second term of (6.23) is of the
order op(1). Similarly, we find that the first term and the fourth term of (6.23) are
dominated by

sup
θ∈NB(θ0)

{
K2 max

1≤k≤n

1
[1 + Kλ

′(θ)g(Xk, θ)]2
‖λ(θ)‖2

∥∥∥∥∂Φθ

∂θ
′

∥∥∥∥2
}

and

sup
θ∈NB(θ0)

{
K max

1≤k≤n

1
|1 + Kλ

′
(θ)g(Xk, θ)|

∥∥∥∥∥
2∑

i=1

m∑
l=1

λil(θ)
∂2g(i−1)m+l(Xk, θ)

∂θ∂θ
′

∥∥∥∥∥
}

,

respectively. Then by evaluating the stochastic orders of these terms, we can find that
they are of the order op(1).

As the dominant term, we need to evaluate the 3rd term of (6.23). After tedious
but straightforward calculations on the 3rd term of (6.23), it is possible to show that

sup
θ∈NB(θ0)

∥∥∥∥∥∥∥
⎧⎪⎨⎪⎩K

n

n∑
k=1

(
−∂Φθ/∂θ

′)′

1 + Kλ
′
(θ)g(Xk, θ)

⎫⎪⎬⎪⎭T−1
n,θ

⎧⎨⎩ 1
n

n∑
k=1

K2

m

g(Xk, θ)λ
′
(θ)
(
−∂Φθ/∂θ

′)
(1 + Kλ

′
(θ)g(Xk, θ))2

⎫⎬⎭
∥∥∥∥∥∥∥ = op(1)

and then we find that

(6.25) sup
θ∈NB(θ0)

∥∥∥∥∥∥∥
K

n

n∑
k=1

(
−∂Φθ/∂θ

′)′ (
∂λ(θ)/∂θ

′)
1 + Kλ

′
(θ)g(Xk, θ)

− JK(θ0)

∥∥∥∥∥∥∥ = op(1) .

Therefore, we have established the asymptotic normality

(6.26)
√

n(θ̂n − θ0)
d−→ N (0, JK(θ0)−1) .

By taking sufficiently large K and use Lemma A.1 below, we have limK→∞ J−1
K,θ0

=
I(θ0)−1 .

(Q.E.D.)

Now we present the key Lemma for the asymptotic distributions and asymptotic effi-
ciency of the MEL estimation.

Lemma A.1 : Under the assumptions of Theorem 2.2, we have

(6.27) lim
K→∞

JK(θ0) = lim
K→∞

lim
n→∞

[
Bm(θ0)

′
Am(θ0)−1Bm(θ0)

]
= I(θ0)

as m = m(n) → +∞ (n → +∞), where Am(θ0) and Bm(θ0) are defined in Theorem
2.1 at tl = Kl/m (l = 1, · · · , m).
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Proof of Lemma A.1:
For the random variable X followed by the stable distribution Fθ(·), we define 2m× 1
complex vectors g̃(X, θ) and Φ̃θ by

g̃(X, θ) =
[
eit1X − φθ(t1), · · · , eitmX − φθ(tm), e−it1X − φθ(−t1), · · · , e−itmX − φθ(−tm)

]′
and Φ̃θ = [φθ(t1), · · · , φθ(tm), φθ(−t1), · · · , φθ(−tm)]

′
.

Then we find that

Bm(θ0)
′
Am(θ0)−1Bm(θ0) =

(
∂Φ̃θ0

∂θ
′

)′

{Eθ0 [g̃(X, θ0)g̃(X, θ0)
′
]}−1 ∂Φ̃θ0

∂θ
′ .

Furthremore, we set a 4 × 1 vector wθ(t) by

(6.28) wθ(t) =
1
2π

∫ ∞

−∞
∂ log fθ(x)

∂θ
e−itxdx ,

where fθ(x) is the density function with the parameter θ and W̃ θ is a 2m × 4 matrix
W̃ θ = (wθ(t1), · · · , wθ(tm), wθ(−t1), · · · , wθ(−tm))

′
.

Then we have the convergence as
(6.29)

K

m
W̃

′

θ0

∂Φ̃θ0

∂θ
′ =

K

m

l=m∑
l=−m,l�=0

wθ0(tl)
(

∂φθ0(tl)
∂θ

)′

−→
∫ K

−K
wθ0(t)

(
∂φθ0(t)

∂θ

)′

dt ,

as n → ∞. Similarly, we have the convergence

(6.30)

K2

m2 W̃
′

θ0
Eθ0 [g̃(X, θ0)g̃(X, θ0)

′
]W̃ θ0

−→
∫ K

−K

∫ K

−K
{φθ0(s + t) − φθ0(s)φθ0(t)}wθ0(s)w

′
θ0

(t)dsdt ,

as n → ∞. Hence
(6.31)

lim
n→∞

(
W̃

′

θ0

∂Φ̃θ0

∂θ
′

)′

{W̃
′

θ0
Eθ0 [g̃(X, θ0)g̃(X, θ0)

′
]W̃ θ0}−1W̃

′

θ0

∂Φ̃θ0

∂θ
′

=

{∫ K

−K
wθ0(t)

(
∂φθ0(t)

∂θ

)′

dt

}′{∫ K

−K

∫ K

−K
{φθ0(s+t)−φθ0(s)φθ0(t)}wθ0(s)wθ0(t)dsdt

}−1

×
{∫ K

−K
wθ0(t)

(
∂φθ0(t)

∂θ

)′

dt

}
.

Let denote the RHS of (6.31) as ΞK(θ0). Then for any (non-degenerate) 2m×4 matrix
v we have

(6.32)

[(
v′∂Φ̃θ0

∂θ
′

)′
{v′Eθ0 [g̃(X, θ0)g̃(X, θ0)

′
]v}−1

(
v

′ ∂Φ̃θ0

∂θ
′

)]−1

can be minimized at

v =
{
Eθ0 [g̃(X, θ0)g̃(X, θ0)

′
]
}−1 ∂Φ̃θ0

∂θ
′
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and the minimum value is⎡⎣(∂Φ̃θ0

∂θ
′

)′

{Eθ0 [g̃(X, θ0)g̃(X, θ0)
′
]}−1 ∂Φ̃θ0

∂θ
′

⎤⎦−1

.

It has been well-known that the asymptotic efficiency bound is given by I(θ0)−1, pro-
vided that it is nonsingular. Thus for any 4 × 1 non-zero vector u ,
(6.33)

u
′
I(θ0)−1u ≤ u

′

⎡⎣(∂Φ̃θ0

∂θ
′

)′

{Eθ0 [g̃(X, θ0)g̃(X, θ0)
′
]}−1 ∂Φ̃θ0

∂θ
′

⎤⎦−1

u

≤ u
′

⎡⎣(W̃
′

θ0

∂Φ̃θ0

∂θ
′

)′

{W̃
′

θ0
Eθ0 [g̃(X, θ0)g̃(X, θ0)

′
]W θ0}−1

(
W̃

′

θ0

∂Φ̃θ0

∂θ
′

)⎤⎦−1

u ,

and we have
lim

K→∞
ΞK(θ0) = I(θ0)

by using the same arguments developed by Feuerverger and McDunnough (1981a) for
the information matrix. Hence we have obtained the result.
(Q.E.D.)

Proof of Theorem 2.3:
[i] : The first part of the proof of Theorem 2.3 is similar to the proof of the testing
hypothesis problems given by Owen (1990), and Quin and Lawles (1994) except the
fact that the number of restrictions m(n) increases as n −→ ∞. The precise evalu-
ations of stochastic orders in our derivations are quite tedious, but most of them are
straightforward as in the proof of Theorem 2.2.

Let Yk(θ) = Kλ(θ)
′
g(Xk, θ) (k = 1, · · · , n). Then the criterion function Gn(θ̂n) of

(6.1) in the MEL estimation can be rewritten as

(6.34) Gn(θ̂n) = (− 1
n

)
n∑

k=1

[
Yk(θ̂n)− 1

2
Yk(θ̂n)2 +

1
3
Yk(θ∗)3

]
,

where we have ‖θ∗ − θ̂n‖ ≤ ‖θ̂n − θ0‖. Then we find that

n∑
k=1

|Yk(θ∗)|3 ≤ K2
[

max
1≤k≤n

|Yk(θ∗)|
] n∑

k=1

|λ(θ∗)
′
g(Xk, θ

∗)|2

≤ Km3/2‖λ(θ∗)‖ [√nλ(θ∗)
]′ [K2

n

n∑
k=1

1
m

g(Xk, θ
∗)g(Xk, θ

∗)

] [√
nλ(θ∗)

]
and the stochastic order of th last term is [m3/2 × Op(

√
m/n)][

√
n × Op(

√
m/n)]2 =

op(1). Here we have used the fact that m(n)6/n −→ 0 by the assumption of Theo-
rem 2.3. By expanding

∑n
k=1 Yk(θ̂n) around the true parameter values θ0, it can be
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approximated by
(6.35)

n∑
k=1

Yk(θ̂n)

= K
√

nλ(θ0)
′
[

1√
n

n∑
k=1

g(Xk, θ0)] + K
√

n(θ̂n − θ0)
′ ∂λ(θ0)

∂θ
[

1√
n

n∑
k=1

g(Xk, θ0)]

+ K
√

nλ(θ0)
′
[−∂Φθ0

∂θ
′ ](θ̂n − θ0)

√
n + K

√
n(θ̂n − θ0)

′ ∂λ(θ0)
′

∂θ
[−∂Φθ0

∂θ
′ ](θ̂n − θ0)

√
n + op(1) .

From (6.24), (6.34) and Theorem 2.2, the sum of dominant factors in the last two terms
of (6.35) are cancelled out and it is of the order of op(1). Hence (6.35) can be further
approximated as
(6.36)

n∑
k=1

Yk(θ̂n)

= K
√

nλ(θ0)
′
[

1√
n

n∑
k=1

g(Xk, θ0)

]

− K
√

nλ(θ0)
′
(∂Φθ0

∂θ

′

)
[
(∂Φθ0

∂θ
′ )

′
S−1

n,θ0
(∂Φθ0

∂θ
′ )
]−1

(∂Φθ0

∂θ
′ )

′
K
√

nλ(θ0) + op(1) .

Also by expanding
∑n

k=1 Yk(θ̂n)2 around the true parameter values θ0 and using the
similar arguments, it can be further approximated by
(6.37)

n∑
k=1

Yk(θ̂n)2 = K2∑n
k=1[λ(θ0)

′
g(Xk, θ0)]2

− K
√

nλ(θ0)
′
(∂Φθ0

∂θ
′ )
[
(∂Φθ0

∂θ
)
′
S−1

n,θ0
(∂Φθ0

∂θ
′ )
]−1

(∂Φθ0

∂θ
′ )

′
K
√

nλ(θ0) + op(1) .

Then the second terms of (6.36) and (6.37) are asymptotically equivalent and it is
straightforward to show that

(6.38) 2n
[
Gn(θ̂n)

]
= 2n [Gn(θ0)] + (θ̂n − θ0)

′
(
∂Φθ0

∂θ
′ )

′
S−1

n,θ0
(
∂Φθ0

∂θ
′ )(θ̂n − θ0) + op(1) ,

where

2n [Gn(θ0)] =

[
1√
n

n∑
k=1

K√
m

g(Xk, θ0)

]′
S−1

n,θ0

[
1√
n

n∑
k=1

K√
m

g(Xk, θ0)

]
+ op(1) .

Hence by using the asymptotic normality of the MEL estimator in Theorem 3.2, we
find that (4.39) converges to χ2(q) distribution (q = 4) as n −→ +∞ .

[ii] : In order to show the second part of Theorem 2.3, we define a 2m × 2m matrix
Σm(θ0) = (K2/m)Eθ0[g(X1, θ0)g(X1, θ0)

′
] and 2m × 1 random vectors Xn = (Xnj)

by

(6.39) Xm =
1√
n

n∑
k=1

K√
m

g(Xk, θ0) .
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By using the silimar arguments as in the proof of Theorem 2.2 and the above re-
sult of [i], it is possible to show that we can approximate the test statistic as W2 =
X

′
nΣm(θ0)−1Xn + Op(1). Then we rewrite

(6.40)

X
′
nΣm(θ0)

−1Xn−2m√
4m

=
1√
4m

1
n

n∑
i=i′=1

2m∑
j,k=1

[
K2

m
gj(Xi, θ0)gk(Xi

′ , θ0)σjk(m) − σjk(m)σjk(m)

]

+
1√
4m

1
n

n∑
i�=i

′
=1

2m∑
j,k=1

[
K2

m
gj(Xi, θ0)gk(Xi′ , θ0)σjk(m)

]
,

where g(Xi, θ0) = (gj(Xi, θ0)) and Σm(θ)−1 = (σjk(m)) (i = 1, · · · , n; j, k = 1, · · · , 2m).
Since the expected values in the right-hand side of (6.40) are zeros and the variance
of the first term is less than (1/n)(1/4m)(2m)2 = m/n, it goes to zero as n → +∞.
Because each elements of the second term in (6.40) are bounded, we can apply the
Lindeberg central limit theorem to obtain

(6.41)
X

′
nΣm(θ0)−1Xn − 2m√

4m

d−→ N (0, 1)

as n → +∞. Hence we have the desired result.
(Q.E.D)
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nomics No.318, Department of Economics, Nagoya City University.

[28] MuCulloch, J.H. (1986), “Simple Consistent Estimators of Stable Distribution
Parameters,” Communications in Statistics : Simulation and Computation, Vol.
15, 1109-1136.

[29] Nolan, J.P. (1997), “Numerical Calculation of Stable Densities and Distribution
Functions,” Communications in Statistics : Stochastic Models, Vol. 13, 759-774.

[30] Nolan, J.P. (2001), “Maximum Likelihood Estimation and Diagnostics for Stable
Distributions,” in Levy Processes: Theory and Applications, Birkhauser, Boston,
379-400.

[31] Owen, A.B. (1988), “Empirical Likelihood Ratio Confidence Intervals for a Single
Functional,” Biometrika, Vol. 75, 237-249.

28



[32] Owen, A.B. (1990), “Empirical Likelihood Ratio Confidence Regions,” The Annals
of Statistics, Vol. 18, 90-120.

[33] Owen, A.B. (2001), Empirical Likelihood, Chapman and Hall.

[34] Paulson, A.S., Holcomb, E.W. and Leitch, R.A. (1975), “The Estimation of the
Parameters of the Stable Laws,” Biometrika, Vol. 62, 163-170.

[35] Press, S.J. (1972), “Estimation in Univariate and Multivariate Stable Distribu-
tions,” Journal of the American Statistical Association, Vol. 67, 842-846.

[36] Qin, J. and Lawless, J. (1994), “Empirical Likelihood and General Estimating
Equations,” The Annals of Statistics, Vol. 22, 300-325.

[37] Samorodnitsky G. and Taqqu M.S. (1994), Stable Non-Gaussian Random Pro-
cesses, Chapman and Hall, New York.
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