3 research outputs found

    Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management

    Get PDF
    The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management

    Neural network method for lossless two-conductor transmission line equations based on the IELM algorithm

    No full text
    With the increasing demands for vast amounts of data and high-speed signal transmission, the use of multi-conductor transmission lines is becoming more common. The impact of transmission lines on signal transmission is thus a key issue affecting the performance of high-speed digital systems. To solve the problem of lossless two-conductor transmission line equations (LTTLEs), a neural network model and algorithm are explored in this paper. By selecting the product of two triangular basis functions as the activation function of hidden layer neurons, we can guarantee the separation of time, space, and phase orthogonality. By adding the initial condition to the neural network, an improved extreme learning machine (IELM) algorithm for solving the network weight is obtained. This is different to the traditional method for converting the initial condition into the iterative constraint condition. Calculation software for solving the LTTLEs based on the IELM algorithm is developed. Numerical experiments show that the results are consistent with those of the traditional method. The proposed neural network algorithm can find the terminal voltage of the transmission line and also the voltage of any observation point. It is possible to calculate the value at any given point by using the neural network model to solve the transmission line equation

    Prognostication of Shortwave Radiation Using an Improved No-Tuned Fast Machine Learning

    No full text
    Shortwave radiation density flux (SRDF) modeling can be key in estimating actual evapotranspiration in plants. SRDF is the result of the specific and scattered reflection of shortwave radiation by the underlying surface. SRDF can have profound effects on some plant biophysical processes such as photosynthesis and land surface energy budgets. Since it is the main energy source for most atmospheric phenomena, SRDF is also widely used in numerical weather forecasting. In the current study, an improved version of the extreme learning machine was developed for SRDF forecasting using the historical value of this variable. To do that, the SRDF through 1981–2019 was extracted by developing JavaScript-based coding in the Google Earth Engine. The most important lags were found using the auto-correlation function and defined fifteen input combinations to model SRDF using the improved extreme learning machine (IELM). The performance of the developed model is evaluated based on the correlation coefficient (R), root mean square error (RMSE), mean absolute percentage error (MAPE), and Nash–Sutcliffe efficiency (NSE). The shortwave radiation was developed for two time ahead forecasting (R = 0.986, RMSE = 21.11, MAPE = 8.68%, NSE = 0.97). Additionally, the estimation uncertainty of the developed improved extreme learning machine is quantified and compared with classical ELM and found to be the least with a value of ±3.64 compared to ±6.9 for the classical extreme learning machine. IELM not only overcomes the limitation of the classical extreme learning machine in random adjusting of bias of hidden neurons and input weights but also provides a simple matrix-based method for practical tasks so that there is no need to have any knowledge of the improved extreme learning machine to use it
    corecore