2,121 research outputs found
Utilizing Imogolite Nanotubes as a Tunable Catalytic Material for the Selective Isomerization of Glucose to Fructose
The isomerization of glucose to fructose is an important step in the conversion of biomass to valuable fuels and chemicals. A key challenge for the isomerization reaction is achieving high selectivity towards fructose using recyclable and inexpensive catalysts. Imogolite is a single-walled aluminosilicate nanotube characterized by surface areas of 200-400 m2/g and pore widths near 1 nm. In this study, imogolite nanotubes are used as a heterogeneous catalyst for the isomerization of glucose to fructose. Catalytic testing demonstrates the catalytic activity of imogolite for the isomerization of glucose to fructose. Imogolite is a highly tunable structure and can be modified through substitution of Si with Ge or through functionalization of methyl groups to the inner surface. These modifications change the surface properties of the nanotubes and enable tuning of the catalytic performance. Aluminosilicate imogolite is the most active material for the conversion of glucose. Conversion of glucose of 30% and selectivity for fructose of 45% is achieved using aluminosilicate imogolite. Modification of imogolite with germanium or methyl groups decreases the conversion, but increases the selectivity. Generally, the selectivity for fructose decreases as the conversion of glucose increases. Interestingly, the imogolite nanotubes have comparable catalytic selectivity at similar conversion as base catalyzed reactions. Catalyst recycling experiments revealed that organic content accumulates on the nanotubes that results in a minor reduction in conversion while maintaining similar catalytic selectivity. Overall, imogolite nanotubes demonstrate an active and tunable catalytic platform for the isomerization of glucose to fructose.American Chemical Society Petroleum Research Fund (ACS-PRF 55946-DNI5)National Science Foundation (NSF CBET 1605037; 1653587 and NSF CBET REU 1645126)Ohio State University Institute of Materials Research (OSU IMR FG0138)The Undergraduate Research Office and Office of ResearchA one-year embargo was granted for this item.Academic Major: Chemical Engineerin
Guide to the nature and methods of analysis of the clay fraction of tephras from the South Auckland region, New Zealand.
The manual outlines some of the more common laboratory procedures available for qualitatively and quantitatively analysing the composition of the tephric clays, many of which are difficult to determine because of their short range order or 'amorphous' nature. Techniques described and assessed in terms of their rapidity and quantitativeness include XRD, IR, DTA, TEM and SEM, sodium fluoride reactivity, chemical dissolution analyses, and surface area measurements. No one technique alone produces a definitive clay fraction analysis of tephric deposits. -from Author
Mechanisms of formation and reactivity of imogolite types material
Reactivity of nanopar8cles represents a central issue for many laboratories around the world. Among many supported efforts the control of the morphology of nanopar8cles is mo8vated by the fact that morphology strongly influence the proper8es of the final products. Among the vast family of available nanopar8cles, imogolite is a clay nanotube for which perfect control of the diameter is possible. Imogolites were first observed in volcanic soils[1]. They are natural aluminosilicate nanotubes having the general formula (OH)3Al2O3SiOH with a 2 nm external diameter and up to micrometers in length. The impressive monodispersity in imogolite nanotube diameter has mo8vated research on their forma8on mechanism. Synthesis protocols to produce imogolite were quickly developed. Farmer et al. were the first to obtain synthe8c imogolite using low concentra8ons of AlCl3 and SiO 2 monomers as star8ng materials (millimolar concentra8ons of the reagents) [2]. However, the produc8on of large amount of imogolite or imogolite type materials remained challenging for long 8me. We will present our most recent results concerning the possibility to produce imogolite type materials from highly concentrated stock solu8ons. We will also detail the possibility to form double wall Al- Ge nanotubes and the different stages of their forma8on [3-7]. We will then detail the surface reac8vity of these nanotubes toward metals at he lab scale as well as in natural soil. (Résumé d'auteur
Towards an understanding of thermodynamic and kinetic controls on the formation of clay minerals from volcanic glass under various environmental conditions
lmogolite is the kinetically and thermodynamically favoured weathering product from rhyolitic volcanic glass in the soil-forming environment. However, on thermodynamic grounds imogolite would also appear to be the favoured alteration product of rhyolitic glass deposited in the nearshore marine environment. On the basis that the rate of conversion of glass to clay minerals is a function of the solubility of the clay mineral, smectite is expected to be formed under mildly diagenetic conditions, and formed more rapidly than imogolite in soil. The derived activation energies for formation of imogolite from glass in soils are appropriate for a diffusion controlled reaction, and appear consistent with the diffusion of the tetrahedrally co-ordinated species Al[iv](OH)₂(H2Q)⁺. In the marine environment, however the mechanism for all reactions appear to be surface reaction control
New findings on natural aluminosilicate nanoparticles structure : A synthetic route approach and multi-scale characterization techniques
New findings on the structure of natural and synthetic aluminosilicates nanoparticles
Abundance within andosols of highly reactive aluminosilicate nanoparticles makes of these an important factor affecting soil dynamics (carbon sequestration1, trapping pollutants2 ...). Gaining knowledge of the structural characteristics of such nanoparticles is of fundamental importance to understand their interactions with the different soil compartments. Aluminosilicate nanoparticles can adopt two main structures. Imogolites (Al2SiO3(OH)4), natural aluminosilicate nanotubes that have been well characterized since their discovery in 19723; And allophanes, aluminosilicates with identical chemical composition but with a different structure. allophanes have been described as hollow nanospheres with a diameter ranging from 3 to 5 nm and their structure depends on the Al/Si ratio: (i) Al-rich allophanes (Al/Si=2, Imogolite type local structure); (ii) Si-rich allophanes (Al/Si<2). Nonetheless, the only evidence for allophanes spherical nature up to date has solely come from TEM observations. The actual morphological structure of allophanes still needs to be further investigated. In the present work, Aluminosilicate samples obtained from soils collected in La Reunion (a French volcanic island in the Indian Ocean region) are studied using an array of diverse characterization techniques. While XRD and FTIR results are consistent with the characteristic allophane fingerprint, NMR analysis reveals an imogolite-type local environment of silicon and aluminium, pointing to a type i Al-rich structure. However, no spherical objects could be observed using TEM. In view of such observations, we propose that the structure of these type i Allophane is not consistent with that of a hollow sphere geometry. To obtain further insight into this matter, we synthesised aluminosilicate nanoparticles (both allophane and imogolite), and thoroughly characterized them using a wide variety of high specificity techniques ranging from the macro crystalline structure (TEM, XRD) to the atomic scale (XAFS, PDF). Our findings point to a structure consistent with that of a short imogolite nanotube type structure, rather than a hollow sphere. (Résumé d'auteur
Stability of halloysite, imogolite, and boron nitride nanotubes in solvent media
Inorganic nanotubes are attracting the interest of many scientists and researchers, due to their excellent application potential in different fields. Among them, halloysite and imogolite, two naturally-occurring aluminosilicate mineral clays, as well as boron nitride nanotubes have gained attention for their proper shapes and features. Above all, it is important to reach highly stable dispersion in water or organic media, in order to exploit the features of this kind of nanoparticles and to expand their applications. This review is focused on the structural and morphological features, performances, and ratios of inorganic nanotubes, considering the main strategies to prepare homogeneous colloidal suspensions in various solvent media as special focus and crucial point for their uses as nanomaterials
Carbon storage and DNA absorption in allophanic soils and paleosols
Andisols and andic paleosols dominated by the nanocrystalline mineral allophane sequester large amounts of carbon (C), attributable mainly to its chemical bonding with charged hydroxyl groups on the surface of allophane together with its physical protection in nanopores within and between allophane nanoaggregates. C near-edge X-ray absorption fine structure (NEXAFS) spectra for a New Zealand Andisol (Tirau series) showed that the organic matter (OM) mainly comprises quinonic, aromatic, aliphatic, and carboxylic C. In different buried horizons from several other Andisols, C contents varied but the C species were similar, attributable to pedogenic processes operating during developmental upbuilding, downward leaching, or both. The presence of OM in natural allophanic soils weakened the adsorption of DNA on clay; an adsorption isotherm experiment involving humic acid (HA) showed that HA-free synthetic allophane adsorbed seven times more DNA than HA-rich synthetic allophane. Phosphorus X-ray absorption near-edge structure (XANES) spectra for salmonsperm DNA and DNA-clay complexes indicated that DNA was bound to the allophane clay through the phosphate group, but it is not clear if DNA was chemically bound to the surface of the allophane or to OM, or both. We plan more experiments to investigate interactions among DNA, allophane (natural and synthetic), and OM. Because DNA shows a high affinity to allophane, we are studying the potential to reconstruct late Quaternary palaeoenvironments by attempting to extract and characterise ancient DNA from allophanic paleosol
Structure of short-range ordered aluminosilicates in andic horizons of volcanic soils
Very high levels of C content characterize Andic horizons of volcanic soils. Stabilization of organic matter is due to the presence of short-range ordered aluminosilicates (imogolites, allophanes or proto-imogolites). These phases are often characterized through selective chemical extractions from which the "allophane" content is calculated. However, chemical dissolutions preclude the characterization of the structure of the short-range ordered aluminosilicates. Imogolite is easily distinguishable because of its tubular structure, whereas allophane compounds-usually described as spheres-are harder to identify, especially because of their variable structure and occurrence patterns. In addition, the local structure of allophanes can be very similar to that of proto-imogolite (imogolite precursor). Strangely, this similarity is seldom considered in most characterization studies. In this context, our study focuses on the structure of two short range-ordered aluminosilicates of two different origins, from: (i) an Andosol B horizon (Andosol sample); and (ii) a weathered pumice grain (pumice sample). These natural samples were compared to a synthetic proto-imogolite. The three samples were analyzed using experimental tools that are commonly used for the identification of these nanophases (chemical composition, X-ray diffraction, nuclear magnetic resonance, Fourier transform infrared spectroscopy and transmission electron microscopy). The three samples exhibited the same local structure, but significant differences were observed at a larger scale. The pumice sample clearly showed ring-shaped particles, while the Andosol sample and the synthetic proto-imogolite were amorphous. Our results suggest that poorly ordered proto-imogolite, rather than allophanes, is present in Andosol horizons. (Résumé d'auteur
- …
