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Featured Application: The review is focused on the stabilization of nanotubular materials
in solvent media. This aspect is a key starting point for any application of nanotube-based
formulations for pharmaceutical and industrial applications.

Abstract: Inorganic nanotubes are attracting the interest of many scientists and researchers, due to
their excellent application potential in different fields. Among them, halloysite and imogolite, two
naturally-occurring aluminosilicate mineral clays, as well as boron nitride nanotubes have gained
attention for their proper shapes and features. Above all, it is important to reach highly stable
dispersion in water or organic media, in order to exploit the features of this kind of nanoparticles
and to expand their applications. This review is focused on the structural and morphological
features, performances, and ratios of inorganic nanotubes, considering the main strategies to prepare
homogeneous colloidal suspensions in various solvent media as special focus and crucial point for
their uses as nanomaterials.

Keywords: colloidal stability; nanoparticle dispersion; halloysite; imogolite; boron
nitrides; nanotubes

1. Introduction

Since carbon nanotubes were discovered in 1991 [1], the nanotube structure has garnered
interest and has been widely researched in other types of particles, like metal nanotubes [2,3], oxide
nanotubes [4,5], boron nitride nanotubes [6,7] and nanotubular clays, to study the characteristics of
tunable chemistry, surface area, and porosity.

The need to reach homogeneous particles dispersion in different solvent media represents one
of the main conditions for the use and applicability of those systems [8]. With this aim, this review
will be focused on the colloidal stability of inorganic nanotubes, as well as on the most used strategies
to prepare well-dispersed suspensions. In particular, these aspects will be investigated for halloysite
nanotubes (HNTs) [8], imogolite nanotubes (INTs) [9], and boron nitride nanotubes (BNNTs) [10].

Halloysite nanotubes are composed of a silicon oxygen tetrahedron and alumina oxygen
octahedrons forming a kaolinite-like sheet that rolls up, giving the clay its own hollow tubular structure
(Figure 1a) [11,12]. Since the lumen and the external surface are chemically different, they are positive
and negative in water, respectively, in the 2–8 pH range [13]. HNT size varies with respect to the
natural origin, ranging from 0.5 to 1.5 µm in length, within 50–70 nm for the outer nanotube diameter
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and 10–20 nm for the internal diameter [14]. Moreover, they have biocompatibility [15] and show no
toxicity in vivo [16] and in vitro [17]. These characteristics make HNTs excellent smart materials for the
most diverse applications—for example: food packaging [18–20], drug delivery [21–26], environment
remediation and wastewater treatment [27], cultural heritage [28–32], and additives for enhancing the
performances of polymers [14,33].

Imogolite, firstly observed in volcanic soils, is another natural aluminosilicate whose shape is
nanotubular, with an external diameter of about 2 nm; its length can be expressed in micrometers [34].
INTs are always arranged into bundles, so it is not possible to observe a single nanotube, but rather a
network of bundles (Figure 1b) [35]. Their structure, proposed by Cradwick in 1972, is very similar
to halloysite, namely a layer of orthosilicate tetrahedra overlapping a layer with an aluminum in a
dioctahedral configuration [36]. INTs are considered the clay counterpart of carbon nanotubes, and
they are very similar if dimensions, aspect ratios, and rigidity are considered [9]. Moreover, imogolite
nanotubes are easily synthesized using hydrothermal techniques, without purification steps to do
post-synthesis, and they form stable colloidal suspensions in aqueous solvents [34,37].

The good monodispersity of INTs has motivated researchers to investigate their formation
process. Preparation routes for imogolite were developed very quickly. For instance, the possibility
of controlling their structure and chemical nature makes them very interesting nano-platforms for
various applications [37].

BNNTs were predicted in 1994 [38], and first prepared by Chopra et al. [39] in 1995 as carbon
nanotube inorganic analogs, by alternating boron and nitrogen instead of carbon, almost without
changing the atomic spacing of the graphite-like sheet [10,38]. The key parameters that influence both
the length and size of BNNTs are temperature, catalyst, and boron precursor, as well as duration of the
heating process [10]. The external diameter varies from 4 to 300 nm, usually reaching 30–100 nm, and
the tubes’ lengths are in the range of 500 nm to 1 mm, usually 5–10 µm [10]. Moreover, by changing
the condition of synthesis, a single-walled BNNT, a double-walled BNNT, or a multi-walled BNNT
can be prepared [40]. Although they are very similar to CNTs, BNNTs show greater mechanical
(Young’s modulus of 1.2 TPa) [41], and excellent chemical [42] and electrical properties [43]. One of
the critical points for the applications of BNNTs, as well for CNTs, is their very poor dispersibility in
water and apolar media. Being hydrophobic, BNNTs tend to aggregate and precipitate in about 1 h
in aqueous media [44]. Therefore, they can be exploited in the biological field after an appropriate
noncovalent [45,46] or covalent [47] modification, which can increase their dispersibility in water.
BNNTs were used as smart materials [7], drug [47] and gene delivery systems [48], biomaterials [49],
sensory systems [50], as well as hydrogen storage [51].
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2. Halloysite Nanotubes

2.1. Colloidal Stability in Water

The colloidal stability of HNTs is a crucial aspect that has been investigated with the aim of
improving nanoparticle use and range through several possible applications [8]. HNTs’ aqueous
dispersions can form liquid crystalline phases when high concentrations are approached [53].
Moreover, the transition can be controlled by pH, providing an interesting system for obtaining
birifrangent materials under controlled chemical stimuli [53]. In light of that, different strategies for the
manipulation of chemico-physical properties into aqueous media are pursued by the most appropriate
functionalization of halloysite internal or external surfaces by electrostatic interactions with differently
charged surfactants or polyelectrolytes.

Bertolino et al. [54] reported studies on the adsorption of three biopolymers that possess a
different charge—namely positive chitosan, neutral hydroxypropyl cellulose (HPC), and negative
pectin—onto halloysite nanotube surfaces in an aqueous environment. It was found that the dispersion
stability depends on the charge of particles and their dimensions, as well on the viscosity and
inter-particle interactions. For instance, the ζ-potential values are not deeply modified by adding
the nonionic HPC; meanwhile they are shifted toward more positive or more negative values by
the addition of charged biopolymers, namely chitosan and pectin, respectively [54]. Generally,
ζ-potential experiments are conducted to evaluate the surface properties and stability of functionalized
nanoparticles, in order to understand if the charge density of both HNTs and polymers can influence the
precipitation process. It was observed that HPC strongly delays sedimentation; meanwhile, chitosan
and pectin stabilize nanotube dispersion at acidic and basic conditions, respectively. Pectin interacts
with the HNTs’ positive lumen and it decreases the HNTs’ negative net charge. Chitosan, however,
interacts on the outer surface. The HPC mechanism is completely different, because it is adsorbed and
it creates a steric barrier that avoids agglomeration and settling [54].

Lee at al. [55] reported the preparation of HNT-based supramolecular complexes by the wrapping
of DNA onto halloysite. It was observed that HNTs become highly dispersible in water after their
interaction with DNA, because the phosphate groups of DNA are re-orientated and can interact with
the silica groups on the external surface of HNTs. Most likely, the enhanced colloidal stability is due to
the neutralization of the inner positive charge, leading to an increase of the net negative ζ-potential
and particle–particle repulsions. These findings are confirmed by more recent studies on anionic
surfactants and bio-polyanions (pectins) [54,56].

The effect on the colloidal stability of halloysite nanotubes has been also studied,
considering the functionalization with thermosensitive polymers, namely poly(N-isopropylacrylamide)
(PNIPAM) [57,58]. It was observed that PNIPAM interacted with the external surface of HNT
and PNIPAM–NH2 (amine terminated poly(N-isopropylacrylamide)) was adsorbed onto the
external surface. Moreover, halloysite nanotubes changed their properties within the polymer/HNTs
in comparison with the neat clay, thus indicating a transferring of the thermos-responsiveness from
polymers to halloysite in the hybrid system [57]. Furthermore, since the dispersions were stable
only under the “critical temperature”, this allowed for preparing systems where the temperature
can be tuned in order to have external stimuli-responsive solubilization and delivery, providing a
biocompatible and thermosensitive material for the targeted release of active species [58].

Amphiphilic molecules are often used to stabilize nanoparticle dispersions, exploiting their
functional groups. The choice of the surfactant in terms of the headgroup charge is a key factor, and it
has an important effect on the colloidal stability of halloysite because of its differently charged surfaces.

For instance, it has been demonstrated that the adsorption of surfactants that are negatively
charged (e.g., sodium alkanoates) onto the internal surface of the nanotubes increases their
overall negative charge, and thus enhances both electrostatic repulsions and colloidal stability
(Figure 2) [56,59].
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The change of the ζ potential, which becomes more negative, predicts a better dispersibility of
the hybrid materials in comparison with the neat clay. The sedimentation process is strongly slowed
down by the surfactants [59].

According to the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory, colloidal stability is
influenced by the balance between attractive and repulsive van der Waals forces coming from the
double layer that surrounds each particle [60], meaning that experimental results are consistent with
the theory.
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water: photographs and transmittance as a function of time. Adapted from [56].

Moreover, the structure of neat HNTs and negatively charged surfactant-functionalized nanotubes
were studied by small angle neutron scattering [52]. The importance of both the structural organization
of the surfactants and their headgroup was shown. In particular, it was noted that sodium dodecanoate
is organized in a densely packed, multilayer structure within the halloysite cavity, and is promoted by
the carboxylate groups, as seen from a correlation peak in SANS (Small Angle Neutron Scattering) [52].

Finally, these inorganic, micelles-like hybrid materials can be used to solubilize and deliver species
of a different nature in water, thus exploiting their sustainable and biocompatible properties [52,56,59].

It was also found that perfluoroalkylated surfactants, when adsorbed at the internal surface,
created stable suspensions, and these systems can be exploited as nanocontainers of non-foaming
oxygen in aqueous media for gas delivery by external stimuli [61].

More interestingly, it was shown that the concentration effect was negligible and that the hybrid
materials did not associate; however, nanotubes diffuse as single particles [61].

Lun et al. [62] reported a method where sodium dodecyl sulfate (SDS) was used to prepare
uniform and stable halloysite nanotubes dispersions. The ζ-potential values of an HNTs/SDS system
became more negative than those of the neat clay, indicating that SDS is adsorbed on the inner surface,
enhancing the dispersibility by electrostatic effect. It was observed that the dispersibility is not effected
by the content of the dispersant, thus confirming the saturation effect.

2.2. Colloidal Stability in Organic Media

Another crucial aspect is the preparation of stable colloidal dispersions of halloysite nanotubes
in organic media. Chang et al. [63] prepared a complex of amylose and HNT by co-assembly in a
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solid state. In particular, it was found that the amylose interacts with the outer surface of HNTs,
wrapping them. The stability of pristine nanotubes and amylose-HNT dispersions in DMSO/H2O
were observed for 24 h, and the precipitation of HNT occurred at 0 h [63]; whereas, since the solution
of DMSO/H2O is a good dispersant for the organic moiety, the amylose–HNT was well dispersed in
the solution, and no precipitation was found for 24 h [64]. This was most likely due to the interactions
between amylose and the external surface of HNTs [63]. Literature also reports another strategy
to obtain stable colloidal suspensions, which is the preparation of inorganic reverse micelles in
non-aqueous media based on halloysite nanotubes and cationic surfactants [65]. It is known that
a reverse micelle is constituted by a hydrophobic shell and a hydrophilic cavity, which create an
aqueous nano-droplet in a nonpolar medium. Cationic surfactants interact with the negative outer
surface of HNTs, thus creating nanoparticles with a hydrophobic jacket and a hydrophilic cavity.
The action of the colloidal stability of the obtained hybrid materials was investigated in solvents
with different polarity [65]. Firstly, it was observed that the length chain of the surfactant strongly
influences the charge of modified HNTs. For instance, when the tail length increases, the same happens
to the ζ potential of the hybrid materials, due to the strong hydrophobic interaction between tails, as
evidenced by FTIR [56]. Moreover, the hybrids present faster dynamics compared to the neat nanotubes,
as evidenced by DLS (Dynamic Light Scattering) measurements in chloroform, thus reflecting the
enhancement of electrostatic repulsions. The external surface of nanotubes is more hydrophobic, due
to the presence of the surfactant, resulting in an increase of the colloidal stability of the nanotubes
in nonpolar solvents [65]. In a few words, this procedure allows the fabricating of ecocompatible
reverse micelles with different dispersibility in organic media and tunable hydrophobic/hydrophilic
interfaces, thus available for industrial or biological applications.

3. Imogolite

Concerning imogolite nanotubes, although their formation mechanism has been extensively
investigated and described in recent literature [66], their stability in aqueous suspension was not
deeply investigated. On the other hand, Paineau et al. [9] firstly observed that INTs show a
liquid-crystal phase, columnar in particular, at low concentrations (≈0.3%) with low visco-elasticity
and that is aligned under an electric field.

As expected, INT suspensions form a nematic phase at lower concentrations [67]. Contrarily,
the columnar phase, which can be seen in suspensions of other rod-like particles, was only observed
at large volume fractions (10–70%) [68–70]. Meanwhile the columnar phase of INTs is presented at
concentrations that are two orders of magnitude lower (Figure 3) [9].
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Figure 3. Schemes of (a) isotropic, (b) nematic, (c) columnar, and (d) smectic phases in
imogolite suspensions. Photographs of (e) both isotropic and nematic phases in sedimented
spindle-shaped nematic droplets; and (f, g) the columnar phase, obtained with single-walled
Si–imogolite nanotube (INT) suspensions. Scale bar, 200 mm. Adapted from [9].
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Such a difference is most likely due to the high aspect ratio of imogolite, which favors the nematic
phase [67]. The large intensity of the electrostatic repulsions between charged linear objects is strongly
evidenced by the ordered positions of the charged INT, which stabilizes the columnar phase at very
low concentrations [9].

These results could present important implications for the physics of suspensions of charged
rod-shaped nanoparticles, and could be used for the preparation of ordered nanocomposites, as well
for biophysics, in order to understand the behavior of rod-like biopolymers suspensions.

Moreover, it was observed that imogolite forms sediments at an alkaline pH, even if the net charge
is highly negative, and this leads to fibrous particle aggregation to form thick bundles [71]. To clarify
this aspect, Ma and Karube [72] measured the charge features of INT by calculating the intensity of the
electric field at the external surface, considering the model of imogolite structure and the Gauss’ law.

It was calculated that the field intensity, due to the charge at the external surface of INTs, is half
that at the internal surface. It was impossible to explain the flocculation, because the cation exchange
capability (CEC) of imogolite was high under alkaline conditions. For instance, assuming cation
distribution inside the tube, or inner cation exchange, the measured CEC would correspond to the
negative charge at the inner surface, and the electric field intensity at the external surface would
become half that at the internal surface [72]. This means that the electric field, due to the negative
charges, would be balanced by the counter-ions that entered the tube, and the external surface would
be neutral, thus explaining that imogolite flocculates at alkaline pH and its dispersed at the point of
zero net charge, or at pH = 6.0 [72].

4. Boron Nitride Nanotubes

To improve dispersion stability, numerous methods to functionalize BNNTs were used [10,45,73].
These methods can be organized into three groups: (1) noncovalent, (2) covalent modifications, and
(3) alternation in BNNTs (fabrication of defect sites, insertion of the amino groups, and transformation
of the amino groups) (Figure 4).
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Noncovalent reactions are the most frequently used approach for the surface functionalization of
BNNTs [73]. However, only positively charged agents (e.g., poly-L-lysine and poly-ethyleneimine),
organic amines, or chemical species able to make π-stacking and hydrophobic interactions
showed good results [73]. Synthetic structures with aromatic rings (2-naphthalenecarboxylic acid,
9-anthrancecarboxylic acid, 1-pyrenecarboxylic acid, 1-aminopyrene, and 1-hydroxypyrene) [74] and
polymers containing aromatic subunits, polyaniline, poly(p-phenyleneethynylene), polythiophene,
poly(xylydienetetrahydrothiophene) and poly(sodium styrene sulfonate) [73,75] interacted with
the sidewall of BNNTs via π-π stacking and created stable dispersions. It was shown that
poly(p-phenylene) derivatives have the most interesting potential to disperse BNNTs among studied
polymers [75].

Another simple way to prepare stable colloidal dispersions of BNNTs in organic solution or
aqueous media is to obtain boron nitride nanotubes with NH3 or organic amines [76] or amino acids
(glycine), and coat them subsequently with biopolymers [77]. The glycine has two roles: its amine
group interacts with the B-sites of nanotubes, binding with them; meanwhile, its carboxylic acid group
is an ionic site for anchoring polyelectrolytes. Unexpectedly, BNNTs were effectively dispersed in
water using arabic gum (hydrophilic polymer), where the hydrophobic part of the polymers had
strong hydrophobic interactions with BNNTs and the hydrophilic part was exposed to interactions
with water molecules [78]. Other examples of the fabrication of the stable BNNT dispersions are
modification of the BNNTs, using peptides [79], nucleotide [80], DNA [81], doxorubicin and folate [82],
and lipids [83]. The most stable dispersions in water were obtained for the flavin mononucleotide,
a derivative of vitamin B2 containing an aromatic structure interacting with BNNT via π–π stacking [80].
In addition, flavin mononucleotide-functionalized BNNTs showed high visible light emission, and
were stable for different pH and temperature values. A new approach to disperse the BNNTs was
recently demonstrated [6], in this case via a layer-by-layer deposition of hydroxylated BNNTs with
polyelectrolytes onto Saccharomyces cerevisiae cells.

Different methods of covalent modification of BNNTs have been developed to create colloidal
dispersions in both aqueous media and organic solvents. This functionalization can be done by
exploiting the -NH2 and -OH groups of boron atoms [46,84–86]. Covalent modification of the
hydroxylated BNNTs with glutaraldehyde, followed by functionalization with oligonucleotides [87]
and carbohydrates [88] are described. Zettl developed a new functionalization route by linking stearoyl
chloride with amino groups onto BNNTs [84]. A similar approach was realized with hydroxylated
BNNTs esterified by perfluorobutyric acid or a thioglycolic acid [88]. Another easy approach for
covalent derivatization of nanotubes with organic peroxides was proposed [89], and the functionalized
BNNTs were able to form the stable dispersion in chloroform.

Nowadays, one of the most interesting procedures for nanomaterial functionalization is to
prepare grafted polymer brushes [7,90] (Figure 5a). In this route, the nanotubes are covalently
functionalized with polymer brushes through surface polymerization. In particular, BNNTs were
covalently modified with hydrophobic polystyrene or polyglycidyl methacrylate polymer brushes [90].
The modified nanotubes displayed high dispersibility in a large number of organic media. In the work
of Kalay et al. [7], BNNTs functionalized with the thermo-responsive poly(N-isopropylacrylamide)
(PNIPAM) were fabricated, and were dispersible in water (Figure 5b). It was also shown that the
hydrodynamic radius of these systems decreased two-fold at around 32 ◦C (Figure 5c). In addition,
BNNTs were functionalized by other grafted polymer brushes, similar to other works [91,92].

The modification of nanotubes on their amine groups is widely used, because the amine
groups exist at the ends and as defects of BNNTs. Moreover, other -NH2 groups were also
created on the nanotube surfaces with ammonia plasma irradiation [84]. Amine-functionalized
BNNTs after sonication in chloroform exhibit significantly better dispersibility than pristine BNNTs.
Other mechanisms of functionalization by amine groups use mechanical milling of the boron nitride
nanosheets [93] or iminoborane, which increases the defects density due to cleavage of B–N bonds and
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to the expansion of BN rings [94]. In addition, a prospective method to create stabile dispersion in
water is the hydroxylation of BNNTs in H2O2 solution for 48 h at 110 ◦C [86,87].
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5. Conclusions and Perspectives

It is clear the importance of nanotubular inorganic structures for their characteristics of high
surface ratios, porosity, and tunable chemistry. Halloysite, imogolite, and boron nitride nanotubes
are among the prospective tubular materials for industrial applications. In particular, they are
considered safe materials for living organisms. Although they present a similar morphology, their
chemical structure and properties are different. Chemical composition of HNTs and INTs are very
similar; the surface chemistry is dominated by hydroxyl groups that make them hydrophylic. In the
contrast, native BNNTs are superhydrophobic, and cannot be dispersed in most organic solvents or
in aqueous media. BNNTs show greater mechanical properties (Young’s modulus of 1.22 TPa) than
HNTs and INTs (Young’s modulus of 140–390 GPa). Another interesting aspect is the pH effect on
surface charge. The dielectric properties of aluminum and silicon oxides in HNTs and INTs are different.
Because these nanotubes undergo ionization in aqueous media in an opposite way, they generate
tubes with oppositely charged inner and outer surfaces. Information on BNNT ionization is limited; in
relation to chemical structure, we can assume that BNNTs can be ionized at a low pH, but this aspect
should be investigated in detail. In addition, HNTs and INTs can be easily modified using hydroxyl
groups on the outer surface, while BNNTs are chemically inert enough.

In this review, we report the main aspects of the colloidal stability of hollow-shaped nanoparticles
in both aqueous and organic media, as well as the main strategies to prepare homogeneous and
stable suspensions ranging from selective functionalization with charged molecules like polymers,
biopolymers, and surfactants to pH dependence in water. These are crucial points for the preparation
of a new class of smart hybrid nanomaterials with a wide class of applications, like drug delivery,
catalysis, food packaging, environmental treatment, and cultural heritage.



Appl. Sci. 2018, 8, 1068 9 of 13

Author Contributions: Writing-Original Draft Preparation, L.L., G.C., F.P., Y.S.; Writing-Review & Editing, G.L.;
Supervision, S.M.

Funding: The work was financially supported by the University of Palermo.

Conflicts of Interest: The authors declare that they have no conflicts of interest with this work.

References

1. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [CrossRef]
2. Sun, J.; Wang, J.; Li, Z.; Yang, Z.; Yang, S. Controllable synthesis of 3D hierarchical bismuth compounds with

good electrochemical performance for advanced energy storage devices. RSC Adv. 2015, 5, 51773–51778.
[CrossRef]

3. Yang, G.; Yang, X.; Yang, C.; Yang, Y. A reagentless amperometric immunosensor for human chorionic
gonadotrophin based on a gold nanotube arrays electrode. Colloids Surf. Physicochem. Eng. Asp. 2011, 389,
195–200. [CrossRef]

4. Lai, Y.; Huang, Y.; Wang, H.; Huang, J.; Chen, Z.; Lin, C. Selective formation of ordered arrays of
octacalcium phosphate ribbons on TiO2 nanotube surface by template-assisted electrodeposition. Colloids
Surf. B Biointerfaces 2010, 76, 117–122. [CrossRef] [PubMed]

5. Xu, S.; Ng, J.; Zhang, X.; Bai, H.; Sun, D.D. Adsorption and photocatalytic degradation of Acid Orange 7
over hydrothermally synthesized mesoporous TiO2 nanotube. Colloids Surf. Physicochem. Eng. Asp. 2011,
379, 169–175. [CrossRef]

6. Emanet, M.; Fakhrullin, R.; Çulha, M. Boron Nitride Nanotubes and Layer-By-Layer Polyelectrolyte Coating
for Yeast Cell Surface Engineering. Chem. Nano. Mat. 2016, 2, 426–429. [CrossRef]

7. Kalay, S.; Stetsyshyn, Y.; Lobaz, V.; Harhay, K.; Ohar, H.; Çulha, M. Water-dispersed thermo-responsive
boron nitride nanotubes: Synthesis and properties. Nanotechnology 2016, 27, 035703. [CrossRef] [PubMed]

8. Lazzara, G.; Cavallaro, G.; Panchal, A.; Fakhrullin, R.; Stavitskaya, A.; Vinokurov, V.; Lvov, Y. An assembly
of organic-inorganic composites using halloysite clay nanotubes. Curr. Opin. Colloid Interface Sci. 2018, 35,
42–50. [CrossRef]

9. Paineau, E.; Krapf, M.-E.M.; Amara, M.-S.; Matskova, N.V.; Dozov, I.; Rouzière, S.; Thill, A.; Launois, P.;
Davidson, P. A liquid-crystalline hexagonal columnar phase in highly-dilute suspensions of imogolite
nanotubes. Nat. Commun. 2016, 7, 10271. [CrossRef] [PubMed]

10. Kalay, S.; Yilmaz, Z.; Sen, O.; Emanet, M.; Kazanc, E.; Çulha, M. Synthesis of boron nitride nanotubes and
their applications. Beilstein J. Nanotechnol. 2015, 6, 84–102. [CrossRef] [PubMed]

11. Massaro, M.; Amorati, R.; Cavallaro, G.; Guernelli, S.; Lazzara, G.; Milioto, S.; Noto, R.; Poma, P.; Riela, S.
Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological
applications. Colloids Surf. B Biointerfaces 2016, 140, 505–513. [CrossRef] [PubMed]

12. Ferrante, F.; Armata, N.; Lazzara, G. Modeling of the Halloysite Spiral Nanotube. J. Phys. Chem. C 2015, 119,
16700–16707. [CrossRef]

13. Yang, Y.; Chen, Y.; Leng, F.; Huang, L.; Wang, Z.; Tian, W. Recent Advances on Surface Modification of
Halloysite Nanotubes for Multifunctional Applications. Appl. Sci. 2017, 7, 1215. [CrossRef]

14. Makaremi, M.; Pasbakhsh, P.; Cavallaro, G.; Lazzara, G.; Aw, Y.K.; Lee, S.M.; Milioto, S. Effect of Morphology
and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications.
ACS Appl. Mater. Interfaces 2017, 9, 17476–17488. [CrossRef] [PubMed]

15. Kryuchkova, M.; Danilushkina, A.; Lvov, Y.; Fakhrullin, R. Evaluation of toxicity of nanoclays and graphene
oxide in vivo: A Paramecium caudatum study. Environ. Sci. Nano 2016, 3, 442–452. [CrossRef]

16. Fakhrullina, G.I.; Akhatova, F.S.; Lvov, Y.M.; Fakhrullin, R.F. Toxicity of halloysite clay nanotubes in vivo:
A Caenorhabditis elegans study. Environ. Sci. Nano 2015, 2, 54–59. [CrossRef]

17. Lvov, Y.; Abdullayev, E. Functional polymer–clay nanotube composites with sustained release of chemical
agents. Prog. Polym. Sci. 2013, 38, 1690–1719. [CrossRef]

18. Biddeci, G.; Cavallaro, G.; Di Blasi, F.; Lazzara, G.; Massaro, M.; Milioto, S.; Parisi, F.; Riela, S.; Spinelli, G.
Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film.
Carbohydr. Polym. 2016, 152, 548–557. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/354056a0
http://dx.doi.org/10.1039/C5RA09760F
http://dx.doi.org/10.1016/j.colsurfa.2011.08.027
http://dx.doi.org/10.1016/j.colsurfb.2009.10.023
http://www.ncbi.nlm.nih.gov/pubmed/19900795
http://dx.doi.org/10.1016/j.colsurfa.2010.11.032
http://dx.doi.org/10.1002/cnma.201600044
http://dx.doi.org/10.1088/0957-4484/27/3/035703
http://www.ncbi.nlm.nih.gov/pubmed/26636569
http://dx.doi.org/10.1016/j.cocis.2018.01.002
http://dx.doi.org/10.1038/ncomms10271
http://www.ncbi.nlm.nih.gov/pubmed/26728415
http://dx.doi.org/10.3762/bjnano.6.9
http://www.ncbi.nlm.nih.gov/pubmed/25671154
http://dx.doi.org/10.1016/j.colsurfb.2016.01.025
http://www.ncbi.nlm.nih.gov/pubmed/26812638
http://dx.doi.org/10.1021/acs.jpcc.5b04281
http://dx.doi.org/10.3390/app7121215
http://dx.doi.org/10.1021/acsami.7b04297
http://www.ncbi.nlm.nih.gov/pubmed/28481104
http://dx.doi.org/10.1039/C5EN00201J
http://dx.doi.org/10.1039/C4EN00135D
http://dx.doi.org/10.1016/j.progpolymsci.2013.05.009
http://dx.doi.org/10.1016/j.carbpol.2016.07.041
http://www.ncbi.nlm.nih.gov/pubmed/27516303


Appl. Sci. 2018, 8, 1068 10 of 13

19. Bertolino, V.; Cavallaro, G.; Lazzara, G.; Merli, M.; Milioto, S.; Parisi, F.; Sciascia, L. Effect of the Biopolymer
Charge and the Nanoclay Morphology on Nanocomposite Materials. Ind. Eng. Chem. Res. 2016, 55,
7373–7380. [CrossRef]

20. Gorrasi, G.; Pantani, R.; Murariu, M.; Dubois, P. PLA/Halloysite Nanocomposite Films: Water Vapor Barrier
Properties and Specific Key Characteristics. Macromol. Mater. Eng. 2014, 299, 104–115. [CrossRef]

21. Massaro, M.; Lazzara, G.; Milioto, S.; Noto, R.; Riela, S. Covalently modified halloysite clay nanotubes:
Synthesis, properties, biological and medical applications. J. Mater. Chem. B 2017, 5, 2867–2882. [CrossRef]

22. Lvov, Y.M.; DeVilliers, M.M.; Fakhrullin, R.F. The application of halloysite tubule nanoclay in drug delivery.
Expert Opin. Drug Deliv. 2016, 13, 977–986. [CrossRef] [PubMed]

23. Fakhrullin, R.F.; Lvov, Y.M. Halloysite clay nanotubes for tissue engineering. Nanomedicine 2016, 11,
2243–2246. [CrossRef] [PubMed]

24. Liu, M.; Zhang, Y.; Wu, C.; Xiong, S.; Zhou, C. Chitosan/halloysite nanotubes bionanocomposites: Structure,
mechanical properties and biocompatibility. Int. J. Biol. Macromol. 2012, 51, 566–575. [CrossRef] [PubMed]

25. Liu, M.; Wu, C.; Jiao, Y.; Xiong, S.; Zhou, C. Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue
engineering. J. Mater. Chem. B 2013, 1, 2078–2089. [CrossRef]

26. Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F.; Evtugyn, V.; Rozhina, E.; Fakhrullin, R. Nanohydrogel
Formation within the Halloysite Lumen for Triggered and Sustained Release. ACS Appl. Mater. Interfaces
2018, 10, 8265–8273. [CrossRef] [PubMed]

27. Zhao, Y.; Abdullayev, E.; Vasiliev, A.; Lvov, Y. Halloysite nanotubule clay for efficient water purification.
J. Colloid Interface Sci. 2013, 406, 121–129. [CrossRef] [PubMed]

28. Cavallaro, G.; Danilushkina, A.A.; Evtugyn, V.G.; Lazzara, G.; Milioto, S.; Parisi, F.; Rozhina, E.V.;
Fakhrullin, R.F. Halloysite Nanotubes: Controlled Access and Release by Smart Gates. Nanomaterials
2017, 7, 199. [CrossRef] [PubMed]

29. Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F.; Ruisi, F. Nanocomposites based on esterified colophony
and halloysite clay nanotubes as consolidants for waterlogged archaeological woods. Cellulose 2017, 24,
3367–3376. [CrossRef]

30. Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F.; Sparacino, V. Thermal and dynamic mechanical properties of
beeswax-halloysite nanocomposites for consolidating waterlogged archaeological woods. Polym. Degrad. Stab.
2015, 120, 220–225. [CrossRef]

31. Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F. Halloysite nanotubes as sustainable nanofiller for paper
consolidation and protection. J. Therm. Anal. Calorim. 2014, 117, 1293–1298. [CrossRef]

32. Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F. Halloysite Nanotubes for Cleaning, Consolidation and
Protection. Chem. Rec. 2018. [CrossRef] [PubMed]

33. Gorrasi, G. Dispersion of halloysite loaded with natural antimicrobials into pectins: Characterization and
controlled release analysis. Carbohydr. Polym. 2015, 127, 47–53. [CrossRef] [PubMed]

34. Thill, A.; Maillet, P.; Guiose, B.; Spalla, O.; Belloni, L.; Chaurand, P.; Auffan, M.; Olivi, L.; Rose, J.
Physico-chemical Control over the Single- or Double-Wall Structure of Aluminogermanate Imogolite-like
Nanotubes. J. Am. Chem. Soc. 2012, 134, 3780–3786. [CrossRef] [PubMed]

35. Rotoli, B.M.; Guidi, P.; Bonelli, B.; Bernardeschi, M.; Bianchi, M.G.; Esposito, S.; Frenzilli, G.; Lucchesi, P.;
Nigro, M.; Scarcelli, V.; et al. Imogolite: An Aluminosilicate Nanotube Endowed with Low Cytotoxicity and
Genotoxicity. Chem. Res. Toxicol. 2014, 27, 1142–1154. [CrossRef] [PubMed]

36. Cradwick, P.D.G.; Farmer, V.C.; Russell, J.D.; Masson, C.R.; Wada, K.; Yoshinaga, N. Imogolite, a Hydrated
Aluminium Silicate of Tubular Structure. Nat. Phys. Sci. 1972, 240, 187–189. [CrossRef]

37. Amara, M.-S.; Paineau, E.; Bacia-Verloop, M.; Krapf, M.-E.M.; Davidson, P.; Belloni, L.; Levard, C.; Rose, J.;
Launois, P.; Thill, A. Single-step formation of micron long (OH)3Al2O3Ge(OH) imogolite-like nanotubes.
Chem. Commun. 2013, 49, 11284–11286. [CrossRef] [PubMed]

38. Rubio, A.; Corkill, J.L.; Cohen, M.L. Theory of graphitic boron nitride nanotubes. Phys. Rev. B 1994, 49,
5081–5084. [CrossRef]

39. Chopra, N.G.; Luyken, R.J.; Cherrey, K.; Crespi, V.H.; Cohen, M.L.; Louie, S.G.; Zettl, A. Boron Nitride
Nanotubes. Science 1995, 269, 966–967. [CrossRef] [PubMed]

40. Madani, M.S.; Monajjemi, M.; Aghaei, H. The Double Wall Boron Nitride Nanotube: Nano-Cylindrical
Capacitor. Orient. J. Chem. 2017, 33, 1213–1222. [CrossRef]

http://dx.doi.org/10.1021/acs.iecr.6b01816
http://dx.doi.org/10.1002/mame.201200424
http://dx.doi.org/10.1039/C7TB00316A
http://dx.doi.org/10.1517/17425247.2016.1169271
http://www.ncbi.nlm.nih.gov/pubmed/27027933
http://dx.doi.org/10.2217/nnm-2016-0250
http://www.ncbi.nlm.nih.gov/pubmed/27527682
http://dx.doi.org/10.1016/j.ijbiomac.2012.06.022
http://www.ncbi.nlm.nih.gov/pubmed/22743347
http://dx.doi.org/10.1039/c3tb20084a
http://dx.doi.org/10.1021/acsami.7b19361
http://www.ncbi.nlm.nih.gov/pubmed/29430922
http://dx.doi.org/10.1016/j.jcis.2013.05.072
http://www.ncbi.nlm.nih.gov/pubmed/23806416
http://dx.doi.org/10.3390/nano7080199
http://www.ncbi.nlm.nih.gov/pubmed/28788058
http://dx.doi.org/10.1007/s10570-017-1369-8
http://dx.doi.org/10.1016/j.polymdegradstab.2015.07.007
http://dx.doi.org/10.1007/s10973-014-3865-5
http://dx.doi.org/10.1002/tcr.201700099
http://www.ncbi.nlm.nih.gov/pubmed/29320613
http://dx.doi.org/10.1016/j.carbpol.2015.03.050
http://www.ncbi.nlm.nih.gov/pubmed/25965455
http://dx.doi.org/10.1021/ja209756j
http://www.ncbi.nlm.nih.gov/pubmed/22296596
http://dx.doi.org/10.1021/tx500002d
http://www.ncbi.nlm.nih.gov/pubmed/24933079
http://dx.doi.org/10.1038/physci240187a0
http://dx.doi.org/10.1039/c3cc46839a
http://www.ncbi.nlm.nih.gov/pubmed/24153223
http://dx.doi.org/10.1103/PhysRevB.49.5081
http://dx.doi.org/10.1126/science.269.5226.966
http://www.ncbi.nlm.nih.gov/pubmed/17807732
http://dx.doi.org/10.13005/ojc/330320


Appl. Sci. 2018, 8, 1068 11 of 13

41. Chopra, N.G.; Zettl, A. Measurement of the elastic modulus of a multi-wall boron nitride nanotube.
Solid State Commun. 1998, 105, 297–300. [CrossRef]

42. Zhi, C.; Bando, Y.; Tang, C.; Xie, R.; Sekiguchi, T.; Golberg, D. Perfectly dissolved boron nitride nanotubes
due to polymer wrapping. J. Am. Chem. Soc. 2005, 127, 15996–15997. [CrossRef] [PubMed]

43. Terao, T.; Zhi, C.; Bando, Y.; Mitome, M.; Tang, C.; Golberg, D. Alignment of Boron Nitride Nanotubes in
Polymeric Composite Films for Thermal Conductivity Improvement. J. Phys. Chem. C 2010, 114, 4340–4344.
[CrossRef]

44. Ciofani, G.; Danti, S.; Ricotti, L.; D’Alessandro, D.; Moscato, S.; Berrettini, S.; Mattoli, V.; Menciassi, A. Boron
nitride nanotubes: Production, properties, biological interactions and potential applications as therapeutic
agents in brain diseases. Curr. Nanosci. 2011, 7. [CrossRef]

45. Gao, Z.; Zhi, C.; Bando, Y.; Golberg, D.; Serizawa, T. Chapter 2—Functionalization of boron nitride nanotubes
for applications in nanobiomedicine. In Boron Nitride Nanotubes in Nanomedicine; Elsevier Inc.: New York,
NY, USA, 2016; pp. 17–40.

46. Ciofani, G.; Genchi, G.G.; Liakos, I.; Athanassiou, A.; Dinucci, D.; Chiellini, F.; Mattoli, V. A simple approach
to covalent functionalization of boron nitride nanotubes. J. Colloid Interface Sci. 2012, 374. [CrossRef]
[PubMed]

47. Li, X.; Hanagata, N.; Wang, X.; Yamaguchi, M.; Yi, W.; Bando, Y.; Golberg, D. Multimodal
luminescent-magnetic boron nitride nanotubes@NaGdF(4):Eu structures for cancer therapy. Chem. Commun.
2014, 50, 4371–4374. [CrossRef] [PubMed]

48. Ferreira, T.H.; Hollanda, L.M.; Lancellotti, M.; de Sousa, E.M.B. Boron nitride nanotubes chemically
functionalized with glycol chitosan for gene transfection in eukaryotic cell lines. J. Biomed. Mater. Res.
Part A 2015, 103, 2176–2185. [CrossRef] [PubMed]
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