29,940 research outputs found

    Motion connected operators for image sequences

    Get PDF
    This paper deals with motion-oriented connected operators. These operators eliminate from an original sequence the components that do not undergo a specific motion (defined as a filtering parameter). As any connected operator, they achieve a simplification of the original image while preserving the contour information of the components that have not be removed. Motion-oriented filtering may have a large number of applications including sequence analysis with motion multi-resolution decomposition or motion estimation.Peer ReviewedPostprint (published version

    Implementation and Validation of Video Stabilization using Simulink

    Get PDF
    A fast video stabilization technique based on Gray-coded bit-plane (GCBP) matching for translational motion is implemented and tested using various image sequences. This technique performs motion estimation using GCBP of image sequences which greatly reduces the computational load. In order to further improve computational efficiency, the three-step search (TSS) is used along with GCBP matching to perform a competent search during correlation measure calculation. The entire technique has been implemented in Simulink to perform in real-time

    Prediction and Tracking of Moving Objects in Image Sequences

    Get PDF
    We employ a prediction model for moving object velocity and location estimation derived from Bayesian theory. The optical flow of a certain moving object depends on the history of its previous values. A joint optical flow estimation and moving object segmentation algorithm is used for the initialization of the tracking algorithm. The segmentation of the moving objects is determined by appropriately classifying the unlabeled and the occluding regions. Segmentation and optical flow tracking is used for predicting future frames

    Automatic vehicle tracking and recognition from aerial image sequences

    Full text link
    This paper addresses the problem of automated vehicle tracking and recognition from aerial image sequences. Motivated by its successes in the existing literature focus on the use of linear appearance subspaces to describe multi-view object appearance and highlight the challenges involved in their application as a part of a practical system. A working solution which includes steps for data extraction and normalization is described. In experiments on real-world data the proposed methodology achieved promising results with a high correct recognition rate and few, meaningful errors (type II errors whereby genuinely similar targets are sometimes being confused with one another). Directions for future research and possible improvements of the proposed method are discussed

    Recursive Estimation of Camera Motion from Uncalibrated Image Sequences

    Get PDF
    In This memo we present an extension of the motion estimation scheme presented in a previous CDS technical report [14, 16], in order to deal with image sequences coming from an uncalibrated camera. The scheme is based on some results in epipolar geometry and invariant theory which can be found in [6]. Experiments are performed on noisy synthetic images

    Recursive estimation of camera motion from uncalibrated image sequences

    Get PDF
    We describe a method for estimating the motion and structure of a scene from a sequence of images taken with a camera whose geometric calibration parameters are unknown. The scheme is based upon a recursive motion estimation scheme, called the “essential filter”, extended according to the epipolar geometric representation presented by Faugeras, Luong, and Maybank (see Proc. of the ECCV92, vol.588 of LNCS, Springer Verlag, 1992) in order to estimate the calibration parameters as well. The motion estimates can then be fed into any “structure from motion” module that processes motion error, in order to recover the structure of the scene
    corecore