453,087 research outputs found
Emergence of the Shackleton Range from beneath the Antarctic Ice Sheet due to glacial erosion
This paper explores the long-term evolution of a subglacial fjord landscape in the Shackleton Range, Antarctica. We propose that prolonged ice-sheet erosion across a passive continental margin caused troughs to deepen and lower the surrounding ice-sheet surface, leaving adjacent mountains exposed. Geomorphological evidence suggests a change in the direction of regional ice flow accompanied emergence. Simple calculations suggest that isostatic compensation caused by the deepening of bounding ice-stream troughs lowered the ice-sheet surface relative to the mountains by ~800m. Use of multiple cosmogenic isotopes on bedrock and erratics (26Al, 10Be, 21Ne) provides evidence that overriding of the massif and the deepening of the adjacent troughs occurred earlier than the Quaternary. Perhaps this occurred in the mid-Miocene, as elsewhere in East Antarctica in the McMurdo Dry Valleys and the Lambert basin. The implication is that glacial erosion instigates feedback that can change ice-sheet thickness, extent, and direction of flow. Indeed, as the subglacial troughs evolve over millions of years, they increase topographic relief; and this changes the dynamics of the ice sheet. © 2013 Elsevier B.V
A stratigraphic link across 1100 km of the Antarctic Ice Sheet between the Vostok ice-core site and Titan Dome (near South Pole)
Isochronous internal ice-sheet layering, measured from airborne 60 MHz radar, was traced between Lake Vostok and the Titan Ice Dome (100 km from South Pole Station), Antarctica. Three layers were selected between Ridge B and Titan Dome, and between Ridge B and Lake Vostok. This layering can be used to correlate the existing Vostok ice core across 1100 km of the ice sheet interior. Our correlation is also matched to the new EPICA ice-core site, by using an existing radar link between Vostok and Dome C stations. Thus, three East Antarctic ice domes are linked stratigraphically for the first time through internal ice-sheet radar layering. Our results indicate that the basal layers of ice at Titan Dome are around 165,000 years old suggesting that this location and, by inference, the South Pole Station, are prime sites for a high-resolution ice core from the last glacial-interglacial cycle
Anisotropic Radial Basis Function Methods for Continental Size Ice Sheet Simulations
In this paper we develop and implement anisotropic radial basis function
methods for simulating the dynamics of ice sheets and glaciers. We test the
methods on two problems: the well-known benchmark ISMIP-HOM B that corresponds
to a glacier size ice and a synthetic ice sheet whose geometry is inspired by
the EISMINT benchmark that corresponds to a continental size ice sheet. We
illustrate the advantages of the radial basis function methods over a standard
finite element method. We also show how the use of anisotropic radial basis
functions allows for accurate simulation of the velocities on a large ice
sheet, which was not possible with standard isotropic radial basis function
methods due to a large aspect ratio between the ice length and the ice
thickness. Additionally, we implement a partition of unity method in order to
improve the computational efficiency of the radial basis function methods.Comment: The authors contributed equally to this wor
New Constraints on the Timing and Pattern of Deglaciation in the Húnaflói Bay Region of Northwest Iceland Using Cosmogenic 36CA Dating and Geomorphic Mapping
Understanding the evolution and timing of changes in ice sheet geometry and extent in Iceland during the Last Glacial Maximum (LGM) and subsequent deglaciation continues to stimulate much active research. Though many previous studies have advanced our knowledge of Icelandic ice sheet history preserved in marine and terrestrial settings (e.g., Andrews et al., 2000; Norðdahl et al., 2008), the timing of ice margin retreat remains largely unknown in several key regions. Recently published 36Cl surface exposure ages of bedrock surfaces and moraines in the West Fjords (Brynjólfsson et al., 2015) contribute important progress in establishing more precise age control of ice recession in northwest Iceland. In another recent study, the spatial pattern and style of deglaciation in northern Iceland have been revealed through geomorphic mapping and GIS analyses of glacial landforms (Principato et al., 2016). Additional insight comes from updated numerical modeling reconstructions, which now provide a series of glaciologically plausible Icelandic ice sheet configurations from the LGM through the last deglaciation (Patton et al., 2017). However, the optimization of ice sheet model simulations relies on critical comparisons with the available empirical record of glacial-geologic evidence and chronological control, which remains relatively limited and sparsely distributed throughout Iceland. Our investigation is motivated by the need for more accurate constraints on the deglacial history in northern Iceland, where dated terrestrial records of ice margin retreat are particularly scarce. (excerpt
Computation of a combined spherical-elastic and viscous-half-space earth model for ice sheet simulation
This report starts by describing the continuum model used by Lingle & Clark
(1985) to approximate the deformation of the earth under changing ice sheet and
ocean loads. That source considers a single ice stream, but we apply their
underlying model to continent-scale ice sheet simulation. Their model combines
Farrell's (1972) elastic spherical earth with a viscous half-space overlain by
an elastic plate lithosphere. The latter half-space model is derivable from
calculations by Cathles (1975). For the elastic spherical earth we use
Farrell's tabulated Green's function, as do Lingle & Clark. For the half-space
model, however, we propose and implement a significantly faster numerical
strategy, a spectral collocation method (Trefethen 2000) based directly on the
Fast Fourier Transform. To verify this method we compare to an integral formula
for a disc load. To compare earth models we build an accumulation history from
a growing similarity solution from (Bueler, et al.~2005) and and simulate the
coupled (ice flow)-(earth deformation) system. In the case of simple isostasy
the exact solution to this system is known. We demonstrate that the magnitudes
of numerical errors made in approximating the ice-earth system are
significantly smaller than pairwise differences between several earth models,
namely, simple isostasy, the current standard model used in ice sheet
simulation (Greve 2001, Hagdorn 2003, Zweck & Huybrechts 2005), and the Lingle
& Clark model. Therefore further efforts to validate different earth models
used in ice sheet simulations are, not surprisingly, worthwhile.Comment: 36 pages, 16 figures, 3 Matlab program
Ice cores and SeaRISE: What we do (and don't) know
Ice core analyses are needed in SeaRISE to learn what the West Antarctic ice sheet and other marine ice sheets were like in the past, what climate changes led to their present states, and how they behave. The major results of interest to SeaRISE from previous ice core analyses in West Antarctic are that the end of the last ice age caused temperature and accumulation rate increases in inland regions, leading to ice sheet thickening followed by thinning to the present
The northern sector of the last British ice sheet : maximum extent and demise
Strongly divided opinion has led to competing, apparently contradictory, views on the timing, extent, flow configuration and decay mechanism of the last British Ice Sheet. We review the existing literature and reconcile some of these differences using remarkable new sea-bed imagery. This bathymetric data provides unprecedented empirical evidence of confluence and subsequent separation of the last British and Fennoscandian Ice Sheets. Critically, it also allows a viable pattern of ice-sheet disintegration to be proposed for the first time. Covering the continental shelf around the northern United Kingdom, extensive echosounder data reveals striking geomorphic evidence – in the form of tunnel valleys and moraines – relating to the former British and Fennoscandian Ice Sheets. The pattern of tunnel valleys in the northern North Sea Basin and the presence of large moraines on the West Shetland Shelf, coupled with stratigraphic evidence from the Witch Ground Basin, all suggest that at its maximum extent a grounded ice sheet flowed from SE to NW across the northern North Sea Basin, terminating at the continental-shelf edge. The zone of confluence between the British and much larger Fennoscandian Ice Sheets was probably across the northern Orkney Islands, with fast-flowing ice in the Fair Isle Channel focusing sediment delivery to the Rona and Foula Wedges. This period of maximum confluent glaciation (c. 30–25 ka BP) was followed by a remarkable period of large-scale ice-sheet re-organisation. We present evidence suggesting that as sea level rose, a large marine embayment opened in the northern North Sea Basin, as far south as the Witch Ground Basin, forcing the two ice sheets to decouple rapidly along a north–south axis east of Shetland. As a result, both ice sheets rapidly adjusted to new quasi-stable margin positions forming a second distinct set of moraines (c. 24–18 ka BP). The lobate overprinted morphology of these moraines on the mid-shelf west of Orkney and Shetland indicates that the re-organisation of the British Ice Sheet was extremely dynamic — probably dominated by a series of internally forced readvances. Critically, much of the ice in the low-lying North Sea Basin may have disintegrated catastrophically as decoupling progressed in response to rising sea levels. Final-stage deglaciation was marked by near-shore ice streaming and increasing topographic control on ice-flow direction. Punctuated retreat of the British Ice Sheet continued until c. 16 ka BP when, following the North Atlantic iceberg-discharge event (Heinrich-1), ice was situated at the present-day coastline in NW Scotlan
Climatic Conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle
International audienceThe ice sheet-climate interaction as well as the climatic response to orbital parameters and atmospheric CO2 concentration are examined in order to drive an ice sheet model throughout an ice age cycle. Feedback processes between ice sheet and atmosphere are analyzed by numerical experiments using a high resolution General Circulation Model (GCM) under different conditions at the Last Glacial Maximum. Among the proposed processes, the ice albedo feedback, the elevation-mass balance feedback and the desertification effect over the ice sheet were found to be the dominant processes for the ice-sheet mass balance. For the elevation-mass balance feedback, the temperature lapse rate over the ice sheet is proposed to be weaker than assumed in previous studies. Within the plausible range of parameters related to these processes, the ice sheet response to the orbital parameters and atmospheric CO2 concentration for the last glacial/interglacial cycle was simulated in terms of both ice volume and geographical distribution, using a three-dimensional ice-sheet model. Careful treatment of climate-ice sheet feedback is essential for a reliable simulation of the ice sheet changes during ice age cycles
- …
