The northern sector of the Last British Ice Sheet: maximum extent and demise

3

7

4 Tom Bradwell¹, Martyn Stoker¹, Nick Golledge¹, Christian Wilson¹, Jon Merritt¹,

Dave Long¹, Jez Everest¹, Ole B. Hestvik², Alan Stevenson¹, Alun Hubbard³, Andrew
 Finlayson¹, Hannah Mathers^{1,4}

8 ¹ British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA, UK

9 ² Olex AS, Pirsenteret, N-7462 Trondheim, Norway

³ Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, Ceredigion,
 SY23 3DB, UK

⁴ Department of Geographical and Earth Sciences, East Quadrangle, University Avenue,

13 University of Glasgow, Glasgow, G12 8QQ, UK

14

15 Abstract

Strongly divided opinion has led to competing, apparently contradictory, views on the 16 timing, extent, flow configuration and decay mechanism of the last British Ice Sheet. 17 18 We review the existing literature and reconcile some of these differences using 19 remarkable new seabed imagery. This bathymetric data provides unprecedented 20 empirical evidence of confluence and subsequent separation of the last British and 21 Fennoscandian Ice Sheets. Critically, it also allows a viable pattern of ice-sheet 22 disintegration to be proposed for the first time. Covering the continental shelf around 23 the northern United Kingdom, extensive echosounder data reveals striking 24 geomorphic evidence - in the form of tunnel valleys and moraines - relating to the 25 former British and Fennoscandian Ice Sheets. The pattern of tunnel valleys in the 26 northern North Sea Basin and the presence of large moraines on the West Shetland 27 Shelf, coupled with stratigraphic evidence from the Witch Ground Basin, all suggest 28 that at its maximum extent a grounded ice sheet flowed from SE to NW across the 29 northern North Sea Basin, terminating at the continental shelf edge. The zone of 30 confluence between the British and much larger Fennoscandian Ice Sheets was 31 probably across the northern Orkney Islands, with fast-flowing ice in the Fair Isle 32 Channel focusing sediment delivery to the Rona and Foula Wedges. This period of 33 maximum confluent glaciation (c. 30-25 ka BP) was followed by a remarkable period 34 of large-scale ice-sheet re-organisation. We present evidence suggesting that as sea-35 level rose, a large marine embayment opened in the northern North Sea Basin, as far south as the Witch Ground Basin, forcing the two ice sheets to decouple rapidly along 36 37 a north-south axis east of Shetland. As a result, both ice-sheets rapidly adjusted to 38 new quasi-stable margin positions forming a second distinct set of moraines (c. 24-18 39 ka BP). The lobate overprinted morphology of these moraines on the mid-shelf west 40 of Orkney and Shetland indicates that the re-organisation of the British Ice Sheet was 41 extremely dynamic – probably dominated by a series of internally forced readvances. Critically, much of the ice in the low-lying North Sea Basin may have disintegrated 42 catastrophically as decoupling progressed in response to rising sea levels. Final-stage 43 44 deglaciation was marked by near-shore ice streaming and increasing topographic 45 control on ice-flow direction. Punctuated retreat of the British Ice Sheet continued 46 until c. 16 ka BP when, following the North Atlantic iceberg-discharge event 47 (Heinrich-1), ice was situated at the present-day coastline in NW Scotland.

48 Key words: UK continental shelf, North Sea, ice stream, sea-level rise, deglaciation

1 Introduction

2 At present, views vary widely regarding the extent, thickness and geometry of the last 3 British Ice Sheet (BIS), and its interaction with the neighbouring Fennoscandian Ice 4 Sheet (FIS). Nowhere is this problem better highlighted than in the North Sea Basin. 5 Whilst some authors have claimed that, at its maximum, the last BIS coalesced with the Fennoscandian Ice Sheet (FIS) in the North Sea Basin (e.g. Sejrup et al., 1994; 6 7 2005; Carr et al., 2006); others have contended that it terminated only a short distance 8 offshore (e.g. Sutherland, 1984; Bowen et al., 2002). These differences in ice-sheet 9 extent are contradictory and appear impossible to reconcile (cf. Bowen et al., 2002; 10 Hall et al., 2003). Resolving this impasse has important implications, not only for 11 underpinning past changes in the geometry and dynamics of the last BIS, but also for 12 environmental change on a global scale. Questions regarding Northern Hemisphere 13 ice-sheet volume, concomitant sea-level changes and the potential impact of 14 meltwater and calving flux on the North Atlantic thermohaline circulation are central 15 to our understanding of the coupled ocean-atmosphere system.

16

17 The glacial history of the continental shelf east of the UK, predominantly comprising 18 the North Sea Basin, remains relatively poorly understood (Figure 1). Previous 19 reconstructions for the northern North Sea area (north of 57°N) depict both ice-free 20 (e.g. Sutherland, 1984; Boulton et al., 1985; Bowen et al., 2002) and ice-covered 21 scenarios (e.g. Sissons, 1967; Boulton et al., 1977; Sejrup et al., 1994). Only recently 22 has opinion begun to converge on the idea of a glaciated North Sea Basin in Late 23 Weichselian times (Marine Isotope Stage 2) (Sejrup et al., 2005; Carr et al., 2006). 24 This view has been strongly reinforced by the recent identification of mega-scale 25 glacial lineations (MSGLs) in the central part of the northern North Sea (Graham et 26 al., 2007). These sub-surface lineations, imaged on 3D seismic profiles in the Witch 27 Ground Basin, represent the signature of fast-flow within a grounded ice sheet. Their 28 presence and orientation are compatible with a major ice stream draining the northern 29 North Sea fed by the coalescent British and Fennoscandian ice sheets. Stratigraphic 30 evidence from British Geological Survey (BGS) boreholes in the Witch Ground Basin 31 supports the interpretation of a palaeo-ice stream flowing over deformable sediment, and crucially constrains the timing of ice flow to between <42 ka 14 C BP and ~22 ka 32 ¹⁴C BP (i.e. <47-26 cal ka BP). On this basis, Graham et al. (2007) place the most 33 34 likely period of ice streaming in the Late Weichselian (MIS 2). These recent important findings, and those of Carr et al. (2006), echo the views first proposed by
Sejrup et al. (1994) and developed in subsequent papers (Sejrup et al., 2003; Sejrup et
al., 2005). Although the exact timing of the glaciation needs refining, unequivocal
evidence that a grounded Weichselian ice sheet occupied the North Sea Basin, to at
least 58.5°N, has now been demonstrated (Graham, 2007; Graham et al., 2007).

6

7 Previous work on the palaeoglaciology of the western margins of the FIS has 8 highlighted the role of the Norwegian Channel in concentrating flow along the west 9 coast of Norway. The Norwegian Channel palaeo-ice stream, first identified in the 10 1990s, drained much of the western sector of the FIS and operated during the last glacial cycle (MIS 2) (Sejrup et al., 1994, 1998; Rise et al., 2004; Ottesen et al., 11 12 2005). However, geophysical data from the seafloor ~50 km west of the Norwegian 13 Channel has also revealed the signature of streaming grounded ice flowing NW on the 14 Egersundbanken (Stalsberg et al., 2003). These glacial lineations indicate that at some periods during the Late Weichselian the FIS was not confined by the Norwegian 15 16 Channel and may have flowed into the North Sea Basin. Graham et al. (2007) inferred 17 ice flow from the SW sector of the FIS across the North Sea Basin to explain the 18 presence of MSGLs in the northern North Sea. This evidence is supported by sensitive 19 computer modelling experiments of the last FIS which simulate the ice sheet 20 periodically overspilling the Norwegian Channel during periods of maximum 21 glaciation (Boulton and Hagdorn, 2006).

22

23 In this paper we present a new model for the deglaciation of the continental shelf 24 around the northern United Kingdom based on a synthesis of new offshore imagery. 25 This model allows us to explain and subsequently reconcile much of the previously 26 published evidence relating to the former extent of the last BIS and FIS. We first 27 review the existing literature pertaining to the extent and demise of the northern sector 28 of the last BIS. We then present virtually complete coverage of echosounder data 29 from the continental shelf around the northern United Kingdom, held within the Olex 30 database (www.olex.no). This phenomenal dataset allows an unprecedented view of 31 the seafloor geomorphology, enabling some of the controversies outlined in our 32 review to be resolved. Focusing principally on geomorphic evidence from the 33 Hebrides Shelf, West Shetland Shelf and the North Sea Basin, we describe and 34 interpret the morphology and distribution of many previously unreported glacial

1 features. Based on these findings we propose a new, glaciologically plausible, 2 reconstruction for the northern half of the last BIS, showing the extent and flow 3 configuration of the ice sheet at Last Glacial Maximum and at two prominent stages 4 during deglaciation. Finally, we discuss the causes of ice-sheet break up; the likely 5 feedbacks within the ocean-cryosphere system; and the wider implications of our 6 findings.

7

8 [FIGURE 1 HERE]

9

10 Terminology

11 This paper refers to the last ice-sheet glaciation to have affected the British Isles. 12 Many onshore workers refer to this as the Late Devensian glaciation (UK) (e.g. 13 Shotton, 1977; Sissons, 1980; Merritt et al., 1995; Ballantyne et al., 1998; Carr et al., 14 2006) or Late Weichselian glaciation (Norway) (e.g. Sejrup et al., 1994, 2003; 2005; 15 Stalsberg et al., 2003; Ottesen et al., 2005); whilst most marine geologists use Marine 16 Isotopic Stages to classify glacial events (i.e. MIS 2) (e.g. Stoker et al., 1993; Gatliff 17 et al., 1994). Unfortunately, confusion still surrounds the use of the term 'Last Glacial 18 Maximum (LGM)' when referring to the British Ice Sheet. The term LGM has been used by various workers to refer to two temporally distinct periods: 18-24 ka BP¹ 19 (Boulton et al., 1991; Mix et al., 2001; Bowen et al., 2002) and 25-35 ka BP (Sejrup 20 21 et al., 2005; Carr et al., 2006). This has led to debate over the exact timing of the Last 22 Glacial Maximum in Britain, Ireland and western Scandinavia.

23

24 In this paper, to avoid confusion, we define the term 'LGM' with reference to the last 25 global ice-sheet maximum, determined from sea-level records to have been between 26 30-22 ka BP – culminating c. 26 ka BP (Peltier and Fairbanks, 2006). With reference 27 to the British Ice Sheet, the LGM encompasses the period of extensive shelf-wide 28 glaciation identified by previous workers (e.g. Stoker et al., 1993; Sejrup et al., 1994, 29 2000, 2005; Knutz et al., 2001; Kroon et al., 2002; Peck et al., 2007). Although 30 loosely defined chronologically, this period of maximum glaciation probably occurred 31 between ~30-25 ka BP (i.e. during the earliest part of the Late Devensian (MIS 2) 32 (Figure 2).

33 [FIGURE 2 HERE]

³⁴ Footnote 1: unless otherwise stated, dates are expressed in calendar (sidereal) years (i.e. 18 ka BP = 18,000 years before present).

1 Record of glaciation

In this section we review the key morphological and chronological evidence for icesheet glaciation, both onshore and offshore northern Britain – providing a context in which to place our new observations. Dates are quoted in both radiocarbon years (¹⁴C BP) and calibrated to calendar years before present (cal BP) where appropriate. Calibrations were performed using CALIB 5.0 (Stuiver et al., 2005) and Fairbanks et al. (2005).

8

9 Onset of glaciation

10 The record of ice rafting offshore northern Britain dates from the Late Pliocene (~2.5 11 Ma), although expansive glaciation of the continental shelf probably did not occur 12 until the early Mid-Pleistocene, about 0.44 Ma (MIS 12) (Shackleton et al., 1984; 13 Cameron et al., 1987; Stoker et al., 1994). In the central and northern North Sea 14 Basin, and on the Hebrides and West Shetland shelves, seismic reflection profiles reveal stacked glacigenic sequences that imply recurrent glaciation of the continental 15 16 shelf between MIS 12 and MIS 2 (Skinner and Gregory, 1983; Stoker et al., 1985, 1993, 1994; Cameron et al., 1987; Sejrup et al., 1987, 1991, 1994, 2000, 2005; 17 Johnson et al., 1993; Gatliff et al., 1994; Holmes, 1997). This has resulted in a glacial 18 19 succession that is locally several hundreds of metres thick.

20

21 Controversy surrounds the timing of onset of the 'Late Devensian glaciation' (MIS 2) 22 in Britain. Traditionally the presence of ice-free conditions in Scotland during the 23 Middle Devensian has been based on a handful of key sites. Organic lake sediments beneath a till at Tolsta Head in northern Lewis yielded a radiocarbon date of 27,333± 24 240¹⁴C BP (Von Weyman and Edwards, 1973); whilst organic deposits beneath till 25 at Sourlie, near Glasgow, suggest that an ice-free, periglacial environment prevailed 26 here at around the same time (29-33 ka 14 C BP = 34-38 ka cal BP) (Jardine et al., 27 28 1988). These two sites are often used to indicate that much of Scotland was ice free in 29 MIS 3 (e.g. Gordon and Sutherland, 1993).

30

Based on numerous cosmogenic dates from Ireland, Bowen et al. (2002) speculate that the BIS had reached its maximum size by 37 ka BP, and in doing so challenged the validity of the radiocarbon dates from Sourlie and elsewhere. However, six AMS dates of between 34,480 and 28,050 ¹⁴C BP on Carex fruit and Coleopteran fragments

1 have been recently reported from Balglass, close to the southern end of the Loch Lomond basin (Brown et al., 2007). The presence of these glacitectonised organic 2 deposits constrain the onset of the last regional glaciation in Scotland to c. 31.5 ka ¹⁴C 3 BP (36.5 ka cal BP), because they are located close to an important conduit of the last 4 5 ice sheet and they occur between two distinct tills, the lower one being weathered. A detailed re-investigation of the fossil flora and fauna at Sourlie by Bos et al. (2004) 6 produced four new conventional radiocarbon dates of between 33.3 and 29.3 ka¹⁴C 7 BP, reinforcing the original findings of Jardine et al. (1988). Furthermore, a re-8 9 investigation of the organic horizon within the Tolsta Head deposits (Whittington and Hall, 2002) has yielded seven AMS dates spanning the period 31,700 ka to 26,150 ¹⁴C 10 BP (31-37 ka cal BP), similar in age to those from Balglass and Sourlie. On the basis 11 12 of these results it is evident that much of Scotland was ice free towards the end of 13 MIS 3, with build up of the last BIS occurring from 35-32 ka cal BP onwards.

14

It is worth noting that the presence of reindeer bones found in limestone caves near 15 Inchnadamph and radiocarbon dated to between \sim 22-32 ka ¹⁴C BP (c. 25-37 ka cal 16 17 BP) suggest that the NW Highlands were substantially ice-free at this time (Lawson, 1984; Murray et al., 1993). However, these dates are likely to be anomalously young, 18 19 as demonstrated by bone remains on carbonate geology elsewhere (Jacobi et al., 20 1998; Hedges and Millard, 1995). Furthermore, improved analytical techniques (ultrafiltration) have recently resulted in revised ¹⁴C ages for Pleistocene faunal 21 remains from the UK (Higham et al., 2006), casting further doubt on the radiocarbon 22 23 ages of the Inchnadamph bones.

24

25 *Offshore evidence*

Key indicators of glacial activity on the UK continental shelf include several 26 generations of tunnel valleys in the North Sea (Cameron et al., 1987; Wingfield, 1989, 27 28 1990; Ehlers and Wingfield, 1991; Huuse and Lykke-Andersen, 2000; Praeg, 2003; 29 Lonergan et al., 2006), and moraines preserved to the NE and NW of Britain (e.g. 30 Rokoengen et al., 1982; Stoker et al., 1985, 1993; Selby, 1989; Hall and Bent, 1990; 31 Stoker and Holmes, 1991; Austin and Kroon, 1996). The continuation of these glacial 32 sequences across the shelf edge to the north and west of Britain indicates that ice-33 marginal and proglacial processes have contributed to the growth of the slope aprons 34 bordering the Hebrides and West Shetland shelves. This is expressed by the development of large trough-mouth fans, including the Barra-Donegal and Sula Sgeir
 Fans and the Rona and Foula Wedges (Stoker, 1995, 2002; Bulat and Long, 2001;
 Davison and Stoker, 2002; Holmes et al., 2003; Long et al., 2004) (Figures 1, 3).

4

5 [FIGURE 3 HERE]

6

7 The recognition of subglacial till in BGS borehole 77/2 in the Witch Ground Basin (Figure 1), dated at between 43 and 22 ka ¹⁴C BP led Sejrup et al. (1994) to propose 8 9 coalescence of the BIS and FIS during the interval 35-26 cal ka BP. A confluent BIS-10 FIS is also consistent with micromorphological studies that have recognised a much 11 more extensive cover of subglacial till within the central and northern North Sea 12 glacial succession (Carr et al., 2006). Graham et al. (2007) have recently reported 13 unambiguous evidence for grounded ice crossing the northern North Sea Basin. From 14 3D seismic data, they identify highly elongate (up to 150:1) MSGLs – formed on top of the subglacial till unit described by Sejrup et al. (1994) in BGS borehole 77/2. The 15 16 MSGLs are orientated NW-SE, and help define a palaeo-ice stream, at least 30 to 50 17 km wide and >90 km in length (the extent of the 3D image). Graham et al. (2007) 18 refer to this as the Witch Ground palaeo-ice stream, and infer that it was sourced from 19 the FIS overspilling the Norwegian Channel during the LGM (MIS 2).

20

21 A number of discrete overdeepened troughs have been identified crossing the 22 Hebrides and West Shetland shelves, linking the Scottish hinterland to the adjacent 23 continental slope (Stoker, 1990, 1995; Stoker et al., 1993). The location of these 24 major cross-shelf troughs is marked by the landward indentation of the 100 m 25 bathymetric contour. Significantly, each of these pathways links the Scottish 26 hinterland to a specific trough-mouth fan on the adjacent continental slope (Figure 1). 27 The best studied of these pathways links The Minch to the Sula Sgeir Fan. In total, 28 this trough is about 200 km long, up to 50 km wide, and contains locally thick 29 accumulations (50–150 m) of subglacial and proglacial sediments, including basal till, 30 multiple ice-contact sequences, stratified proglacial outwash and glacimarine 31 sediments (Stoker et al., 1994; Stoker and Bradwell, 2005). The occurrence of highly 32 elongate (up to 70:1) MSGL, identified at several stratigraphic levels within the 33 trough infill, has been cited as evidence of a palaeo-ice stream. This fast-flow corridor 34 - The Minch palaeo-ice stream - was responsible for draining about 15 000 km² of

the NW sector of the BIS and probably operated during several Mid- to Late
 Pleistocene glaciations, including the LGM (Stoker and Bradwell, 2005; Bradwell et
 al., 2007).

4

5 The Barra-Donegal Fan represents a major focus of glacial sediment (Knutz et al., 2001; Wilson et al., 2002), most probably fed by ice streams that periodically crossed 6 7 the continental shelf, draining much of western Scotland and northwest Ireland. Ice-8 rafted debris recovered from the Barra Fan, sourced from British volcanic rocks, 9 suggest extensive glaciation c. 45 ka BP prior to full glaciation c. 27 ka BP (Knutz et 10 al., 2001; Peck et al., 2007). Further north, the Rona and Foula Wedges also represent 11 trough-mouth fans probably fed by focused flow zones acting between northern 12 mainland Scotland and Shetland during the LGM (Stoker et al., 1993; Davison, 13 2005).

14

15 *Onshore evidence*

16 Onshore landform evidence confirms that during the last ice-sheet glaciation several 17 large fast-flow zones dominated the northern sector of the BIS. An ice stream sourced 18 in the western Scottish Highlands stretched to the Moray Firth, invading the coastal 19 lowlands of Moray, Banffshire and Buchan (Merritt et al., 2003). This same ice 20 stream also flowed north-westwards across Caithness and Orkney (Hall and Bent, 21 1990), laying down shelly tills, and rafts of Mesozoic strata and Pleistocene marine 22 sediment dredged up from the seafloor (Sutherland, 1984; Gordon and Sutherland, 23 1993). Shells, dated by AMS, from within the ice-stream till in northern Caithness indicate that it was laid down after 46 ka ¹⁴C BP (Auton, 2003). The pronounced 24 25 deflection of ice flow in the Moray Firth NW across Caithness was most likely caused 26 by the presence of Scandinavian ice in the central North Sea (Peach and Horne, 1879; 27 Sissons, 1967; Hall and Whittington, 1989; Sutherland, 1984). In NW Scotland a 28 powerful ice stream sourced in the NW Highlands, Skye and Lewis flowed north 29 along The Minch and then northwest onto the continental shelf (Stoker and Bradwell, 30 2005; Bradwell et al., 2007). An ice stream probably also occupied the Vale of 31 Strathmore, Firth of Forth and adjoining lowlands, flowing broadly northeast towards 32 the North Sea Basin (Golledge and Stoker, 2006). Other ice streams have been 33 identified within the northern sector of the last British Ice Sheet: flowing northeast

from the Cairngorms (Hall and Glasser, 2003) and along the Tweed Valley towards
 the North Sea (Clapperton, 1970; Everest et al., 2005).

3

4 Glacial evidence on Orkney and Shetland indicates that an ice sheet sourced in 5 Scandinavia occupied the northern North Sea Basin. The presence of rare Norwegian 6 erratics on Sanday (Orkney), Fair Isle and on southernmost Shetland has long been 7 taken as evidence that a far-travelled ice sheet crossed these islands (Peach and 8 Horne, 1879, 1880; Finlay, 1926; Birnie et al., 1993). Ice-flow indicators on Orkney, 9 most notably striae and ice-directional bedforms, clearly suggest the passage of a 10 powerful ice sheet in a west-northwesterly direction, even on the northernmost islands (Peach and Horne, 1880, 1983; Wilson et al., 1935; Rae, 1976). The presence, on Fair 11 12 Isle, of large-scale bedrock grooves and streamlined forms trending in the same 13 orientation (WNW) is key, as this island has not been affected by glaciers since the 14 LGM (Mykura, 1976). This evidence is incompatible with the deflection of British ice 15 from the Moray Firth on glaciological grounds, but is entirely consistent with glacial 16 overriding from the southeast by a coalescent BIS-FIS. Although most workers have 17 accepted that this ice-sheet configuration existed (e.g. Wilson et al., 1935; Boulton et 18 al., 1977, 2002; Flinn, 1978; Sutherland, 1984; Sejrup et al., 1994; Carr et al., 2006), 19 some have argued that it predated the LGM (Sutherland, 1984; Bowen, 1989; Bowen 20 et al., 2002; Hall et al., 2003). Much of this debate rests on the evidence for a local 21 Shetland ice cap, thought by many to equate to the LGM. However, there is no reason 22 why the presence of a locally nourished ice cap on Shetland is incompatible with the 23 islands being overwhelmed by an ice sheet during the early part of the same 24 glaciation, as has previously been suggested (e.g. Flinn, 1978; Stoker et al., 1993; 25 Ross, 1996; Carr et al., 2006; Golledge et al., 2008).

26

27 Extent of glaciation

The maximum extent of the last ice sheet to cover northern Britain is currently poorly defined (Clark et al., 2004; Evans et al., 2005). The most comprehensive attempts at ice-sheet reconstruction on the continental shelf, based on offshore stratigraphy and geomorphology, are those of Stoker et al. (1993, 1994) and Hall et al. (2003). These reconstructions incorporate geomorphological indicators – end moraines – preserved on the Hebrides and West Shetland shelves (Figure 1) (Selby, 1989; Stoker and Holmes, 1991), and suggest an expansive LGM, reaching the continental-shelf edge in

1 most places except, perhaps, on the northern Hebrides Shelf. Here the presence of 2 undisturbed glacimarine deposits on the outer shelf, with Amino-acid ratios typical of 3 MIS 4 (Stoker et al., 1993), suggests that the grounded ice-sheet limit was on the mid-4 shelf during LGM (Stoker and Bradwell, 2005). However, the reliability and precision 5 of this dating technique has been seriously questioned (McCarroll, 2002). Expansive glaciation across the southern Hebrides Shelf is supported by increased sedimentation 6 7 on the Barra Fan in MIS3 (Kroon et al., 2000; Knutz et al., 2001, 2002; Wilson et al., 8 2002), followed by a major increase c. 26 ka BP (Peck et al., 2007) associated with 9 widespread shelf-edge glaciation at LGM. Other published reconstructions and 10 models, which propose that the last ice sheet terminated only a short distance offshore 11 at its maximum, are therefore probably too conservative (e.g. Sutherland, 1984; 12 Bowen et al., 1986, 2002; Lambeck, 1993, 1995; Ballantyne et al., 1998; Stone et al., 13 1998).

14

15 Prior to 1980, textbook reconstructions showed the FIS crossing Shetland during the 16 last glaciation and deflecting the BIS northwest across Orkney (e.g. Sissons, 1976; 17 Boulton et al., 1977). However, oil-related exploration of the central North Sea Basin 18 in the 1970s and 1980s revealed an apparent absence of Late Devensian/Late Weichselian tills (e.g. Cameron et al., 1987). This led to Sutherland's (1984) 19 20 reconstruction of an independent BIS of restricted size terminating at the Wee Bankie 21 and Bosies Bank moraines off eastern Scotland and on Lewis, NW of the Scottish mainland (Figure 1). Radiocarbon dates between 21.7 ka and 17.7 ka ¹⁴C BP, 22 23 obtained from lignitised wood sampled from glacimarine deposits adjacent to the 24 eastern margin of the Wee Bankie moraine (Holmes, 1977), have traditionally formed 25 the basis for interpreting these moraines as the maximum eastern limit of the last BIS, 26 at around 18-22 ka BP (Sutherland, 1984; Boulton et al., 1985, 1991, 2002; Cameron 27 et al., 1987; Hall and Bent, 1990; Lambeck, 1991; Bowen et al., 2002; Clark et al., 28 2004). However, such a limit fails to reconcile the occurrence of subglacial tunnel 29 valleys largely formed during the Late Devensian (MIS 2), located east of these 30 moraines (Wingfield, 1989; Ehlers and Wingfield, 1991; Lonergan et al., 2006). 31 Many of the tunnel valleys remain exposed at the present-day sea bed (e.g. Devil's 32 Hole Deeps and Fladen Deeps (Figure 1) and, hence, must have formed before ice 33 retreated to the Wee Bankie and Bosies Bank moraines.

Unglaciated enclaves such as those proposed by Sutherland (1984) in Caithness and
 Buchan have subsequently appeared on many published reconstructions of the
 northern sector of the last BIS (e.g. Bowen et al., 1986; Nesje and Sejrup, 1988;
 Lambeck, 1993, 1995; Bowen et al., 2002), some long after Sutherland's evidence
 had been seriously questioned by Peacock (1985), and then refuted by Stoker et al.
 (1993), Merritt et al. (2003) and Hall et al. (2003).

7

8 Controversy also surrounds the vertical extent and thickness of the last BIS. Although 9 high-level trimline evidence from mountains has been used to reconstruct the icesheet surface in NW Scotland (Ballantyne et al., 1998), the validity of trimlines as ice-10 11 sheet surface indicators has been seriously questioned (Fabel et al., 2002; Boulton and 12 Hagdorn, 2006; Shennan et al., 2006; Kleman and Glasser, 2007). Cosmogenic-13 isotope analyses by Stone et al. (1998) were unable to determine whether mountain 14 summits in NW Scotland were buried beneath non-erosive cold-based ice or if they 15 had experienced long subaerial exposure histories. It is therefore uncertain whether 16 ice-free areas existed in Scotland during the LGM, when the ice sheet terminated on 17 the continental shelf.

18

Evidence of glacial activity directly attributed to the FIS is preserved in the northeastern part of the North Sea, where the Tampen Ridge (Figure 1) is interpreted as a lateral moraine associated with the western flank of the Norwegian Channel palaeo-ice stream. This moraine has been attributed to a minor readvance of the ice margin on the flank of the Norwegian Channel (Sejrup et al., 1994, 2000). Radiocarbon dates from shells indicate a maximum age of 18.86 \pm 2.6 ka ¹⁴C BP for the moraine (Rokoengen et al., 1982).

26

Palaeo-ice streams that link the source regions of the BIS to the continental shelf and slope are recognised both east and west of Scotland (Clapperton, 1970; Everest et al., 2005; Stoker and Bradwell, 2005; Golledge and Stoker, 2006). Palaeo-ice stream bedforms have strong morphological expression on the extant landsurface and sea bed, suggesting that these ice streams probably operated during deglaciation of the last BIS. Significant dates and other key elements relating to deglaciation of the northern sector of the last BIS are summarised below.

1 A sequence of glacimarine sediments overlies the MSGL surface in the Witch Ground Basin, dated at between ~22 and 13 ka ¹⁴C BP (Sejrup et al., 1994; Graham et al., 2 3 2007). These sediments record repeated iceberg scouring, which has been taken to indicate the presence of a marine embayment - an ice-free enclave - within the 4 central and northern North Sea from about 22 ka ¹⁴C BP (~26 ka cal BP) onwards. It 5 has been suggested that the Wee Bankie and Bosies Bank moraines were formed in 6 7 this deglacial phase (Carr et al., 2006). Sporadic readjustments of the receding ice margin offshore NE Scotland may have resulted in readvances, between about 18 and 8 16 ka¹⁴C BP (Merritt et al., 2003), correlated with the Tampen Readvance in the NE 9 North Sea (~20 ka cal BP; Sejrup et al., 1994, 2000) and possibly the Dimlington 10 Stadial advance in eastern England (Rose, 1985; Wintle and Catt, 1985). However, 11 12 the preservation of shoreline fragments, such as the Main Perth Shoreline, and the 13 occurrence of shelly glacimarine sediment overlying till in NE Scotland indicate that the adjacent coastal area may have been largely ice free by 15-16 ka ¹⁴C BP 14 (Cullingford and Smith, 1980; Armstrong et al., 1985; Hall and Jarvis, 1989), 15 although this is still debated (cf. McCabe et al. 2007; Peacock et al., 2007). Offshore 16 SW Norway, the Norwegian Channel was deglaciated by about 15.1 ka ¹⁴C BP (~18 17 ka cal BP)(Lehmann et al., 1991). 18

19

North of Shetland, shell fragments from a diamicton (probably till), equivalent in 20 21 stratigraphic status to the large sea-floor moraines west of Shetland (Figure 1), date from 17.8 ka ¹⁴C BP (~21 ka cal BP)(Ross, 1996); whereas the earliest organic 22 deposits (overlying till) on Shetland date from 13 ka ¹⁴C BP or a little earlier (Hoppe, 23 1974; Birnie et al., 1993). On the southern Hebrides Shelf, the formation of the St 24 Kilda moraine banks is dated to between 22.48 and 15.65 ka ¹⁴C BP (Selby, 1989; 25 Austin and Kroon, 1996). In The Minch region, recently performed cosmogenic ¹⁰Be 26 27 analyses of glacially deposited boulders on the east coast of Harris yield exposure ages of 15.4 to 17.6 ka cal BP (Stone and Ballantyne, 2006). Cosmogenic ¹⁰Be 28 29 analyses of boulders on an ice-sheet moraine in Gairloch, Wester Ross (Figure 1), 30 yield a comparable age (15-17 ka cal BP: Everest et al., 2006). These data, combined 31 with environmental information from marine fauna in borehole 78/4 east of Lewis 32 (Graham et al., 1990) (Figure 2) and from several short cores south and west of St Kilda (Austin and Kroon, 1996) indicate open marine conditions from >12,785 ka¹⁴C 33 BP (c.15 ka cal BP) in The Minch and from >13.5 ka ¹⁴C BP around St Kilda. These 34

dates provide minimum ages for deglaciation of the continental shelf off northern
 Britain. By 15 ka cal BP arctic open-water conditions existed on the continental shelf
 when the ice-sheet margin was situated at, or close to, the present-day coastline of
 NW Scotland (Everest et al., 2006; Stoker et al., 2006; Stone and Ballantyne, 2006).

5

6 Following LGM it is thought that the eastern margin of the last ice sheet retreated 7 slowly in a cold climate, owing to precipitation starvation (Sutherland, 1984). Dates 8 from eastern Scotland suggest that the ice-sheet margin had retreated to the present-9 day coastline in Buchan by about 18 ka cal BP (Peacock and Merritt, 2000; Merritt et 10 al., 2003). During deglaciation a number of prominent push moraines were formed 11 including one at Ardersier, near Inverness, probably dating from c. 15 ka cal BP 12 (Merritt et al., 1995). This event has been tentatively correlated with the Killard Point 13 Readvance in Ireland, which in turn has been linked with the North Atlantic iceberg-14 discharge event Heinrich-1 (McCabe et al., 1998, 2005). Deglaciation of the west 15 coast of Scotland was also punctuated by a series of ice-marginal stillstands or 16 oscillations. The Wester Ross Readvance, dated to c.15-17 ka cal BP, may have also 17 been in response to wider events in the North Atlantic (i.e. Heinrich-1) (Everest et al., 18 2006).

- 19
- 20
- 21 22

23 Data Compilation and Methods

This section outlines the datasets and techniques used to elucidate the geomorphologyof the UK continental shelf (Figures 4, 5).

26

27 [FIGURE 4 HERE]

28

29 *Offshore data*

The marine dataset (Figure 4) is part of the Olex bathymetric database compiled, processed and managed by the Norwegian company Olex AS (<u>www.olex.no</u>). The sea-bed image is based upon echosounder data acquired mainly by commercial fishing vessels, but also including data from research vessels. The datasets are contributed voluntarily, the data is then individually merged with the central dataset, after which the contributor has access to all of the shared bathymetry. The data are located by

1 global positioning systems (GPS) and the positional error is generally less than 10 m. 2 The database represents the earth's surface as a series of 5×5 m cells. Vertical 3 resolution is 1 m in water depths >100 m and 0.1 m at depths <100 m. Horizontal 4 datum is WGS84; vertical reference is equinoctial spring low water from predicted tides. The speed of sound in water is harmonised to 1500 ms⁻¹. This means that 5 relative depths are highly accurate with an error range of only 1-2%. The density of 6 7 soundings depends on instrumental output rates; ideally systems record one sounding 8 for every echosounder value. Depth position is adjusted for installation offsets and 9 timing between the echosounder and the GPS. The strength of the Olex system lies in 10 the integration of data contributed by a number of users over several years. Any depth 11 errors are minimised during database compilation and processing by comparing an 12 individual contributor with the large number of other soundings covering the same 13 area. The resultant bathymetric surface can be viewed as 2D contours, 2D shaded 14 relief, 3D views or as 2D profiles. A 2D shaded relief map, with illumination from the 15 north, is shown in Figure 4.

16

17 Onshore data

The onshore topography (Figure 4) is from NEXTMap Britain (Intermap 18 19 Technologies, 2003). Heights are acquired from an aircraft using interferometric synthetic aperture radar (IFSAR) with a vertical resolution of +/- 1 m (95%) and a 20 21 grid cell size of 5 m. Artefacts in areas of steep slopes are possible where the data are 22 degraded either by the rate of change in elevation or by 'shadows' on the far side of a 23 positive object or on the nearside of a steep depression. The dataset is provided in UK 24 Ordnance Survey GB36 projection (as derived from OSTN97) and referenced to 25 Ordnance Datum. The surface model is not vertically exaggerated but is illuminated from the NW at an angle of 45° to highlight the relief. 26

27

28 *Methods*

The processed echosounder data were georectified and merged in a geospatial database, from which a sea-bed surface model was generated (Figure 4). The use of three-dimensional vector data allowed surface models to be illuminated and viewed from any angle (using Olex or ESRI software) thus enabling clear, accurate identification of sea-bed morphology. All positive and negative, linear, bathymetric features within the offshore area (Figure 1) were digitized on screen in ArcGIS 9.0 1 (ESRI). Onshore landforms were not digitized. The data capture method used is 2 similar to that outlined by Stokes and Clark (2003) and Golledge and Stoker (2006). 3 To overcome problems of azimuth bias, identified by Smith and Clark (2005), digital 4 surface models were illuminated first from the northeast and then from the northwest. 5 Digitizing scales varied between 1:50,000 and 1:200,000. Landform dimensions, such 6 as length, height and width were measured digitally within the GIS. The final dataset 7 was output in map format at A0 size, whereby some generalization was made for 8 cartographic clarity (Figure 5).

9

10 [FIGURE 5 HERE]

11

12 **Results**

13

Here we describe the morphology and spatial distribution of sea-bed landforms
imaged in the bathymetric Olex dataset (Figure 4). Relevant geographical information
is shown in Figure 1.

17

The continental shelf around the UK is presently less than 160 m below sea level, with the exception of isolated deeps that incise to depths locally in excess of 200 m (Figure 1). The Witch Ground Basin and the Norwegian Channel are the most notable large bathymetric depressions on the continental shelf between Britain and Norway reaching depths of 155 and 415 m respectively. The shelf break to the north and west of Britain generally occurs around 200 m below present-day sea level and slopes at between 1 and 6 degrees (Figure 1).

25

26 The Olex data reveal channels and ridges across the majority of the sea bed around 27 northern Britain, in particular: around St Kilda; west of Orkney and Shetland; in the 28 Moray Firth; offshore Strathmore; and flanking the western margin of the Norwegian 29 Channel. By contrast, the Witch Ground Basin in the northern North Sea is largely 30 devoid of landforms. Systematic analysis of the Olex dataset has resulted in over 700 31 individual landform elements being digitised in a GIS:- 174 negative linear 32 topographic features (channels) and 537 positive linear topographic features (ridges) 33 (Figure 5).

1 Channels

2 The digitised negative features fall broadly into two groups: A) a north to northwest-

3 trending population widely distributed across the northern North Sea Basin; B) and a

- 4 second set that lie close to the present coastline of eastern Scotland (Figure 5).
- 5

6 Group A comprises 67 channels ranging from 3 to 50 km in length. The channels have 7 a strongly consistent orientation, trending north to northwest, and are relatively evenly 8 spaced across a zone about 300 km west to east and 450 km from north to south. The 9 majority of the channels occur around the northern margin of the Witch Ground 10 Basin; whilst others are located on the southern edge of the basin; and west of the 11 Norwegian Channel (Figure 3). This group of major channels includes the Fladen 12 Deeps (Figure 1) which are cut up to 280 m below sea level, with individual channels 13 up to 4.5 km in width (Andrews et al., 1990; Johnson et al., 1993) (Figure 6).

14

15 [FIGURE 6 HERE]

16

17 Group B consists of two main sets of channels in geographically separate areas. The 18 first set of 26 channels flanking the east coast of mainland Scotland, trend NNE 19 roughly parallel to the present coastline. These features range in length from 2 to 30 20 km, are relatively evenly spaced, and incise an area 40 x 65 km. The channels are cut 21 up to 120 m below sea level and range from 1.5 to 3 km wide (Thomson and Eden, 22 1977; Golledge and Stoker, 2006). Many have branching, sinuous courses. The 23 second set of 60 channels, occur in the outer Moray Firth and are tightly grouped in an 24 area covering 60 x 65 km. They trend broadly west to east and range in length from 25 1.5 to 58 km. Many have branching, sinuous courses. Approximately three quarters of 26 the channels are greater than 10 km in length. The longest of these, the Southern 27 Trench (Figure 1), is 40 km long has a maximum width of 9 km and is locally up to 28 200 m deep (Andrews et al., 1990). Numerous other isolated channels, with similar 29 dimensions to those above, occur on the mid-shelf west of Shetland and in the Fair 30 Isle Channel.

31

In both of these groups, thalwegs do not exhibit consistent downstream deepening but
undulate along the length of the channel (Figure 6). Most channels in the northern
North Sea Basin begin or terminate abruptly; many possess branching tributaries. It

1 should also be noted that whereas these channels retain bathymetric expression, due to 2 only partial sediment infill, they form part of a more extensive system of north to 3 northwest-trending channels in the central and northern North Sea Basin that have 4 been subsequently buried by sediment (Stoker et al., 1985; Gatliff et al., 1994; Praeg, 5 2003; Fitch et al., 2005; Lonergan et al., 2006). Whether open or infilled, the bases of all these channels generally lie between 50 and 100 m below the surrounding sea bed. 6 7 Consequently, the area of the North Sea Basin dissected by large-scale channels is 8 much greater than shown by the Olex data alone.

- 9
- 10 Ridges

Over 500 crestlines were digitised from the Olex dataset. These are broadly dividedinto three groups based on geographical setting (Figure 5).

13

14 Group 1: This group comprises the westernmost landforms, occurring on the 15 outermost shelf. They are large, curvilinear, gently arcuate ridges, concave to the east, 16 trending approximately northeast-southwest. Most are broad features, 2 to 10 km 17 wide, with moderately well-defined seabed expression. The two longest of these 18 ridges run unbroken for over 60 km; between St Kilda and the Flannan Isles, and 19 close to the shelf break west of Shetland (Figure 5). Previously, some of these broad 20 ridges have been mapped from seismic profiles as shelf-edge ice-sheet moraines 21 (Stoker et al., 1993; Stoker and Holmes, 1991) (Figures 1, 3).

22

Group 2: This group comprises the mid-shelf ridges to the north and west of Scotland. Most of these are large, strongly arcuate ridges, with well-defined expression. These ridges can be further subdivided based on location: (a) those west of Orkney and Shetland; (b) those north and east of Shetland; (c) those around St Kilda. A further subset of more-linear Group 2 ridges occurs adjacent to the eastern margin of the Norwegian Channel.

29

30 [FIGURE 7 HERE]

31

Those ridges on the mid-shelf, west of Orkney and Shetland are typically 10 to 100 km in length, and often occur as nested, lobate forms. The striking pattern of ridges, NW of Orkney is strongly concentric from west to east (Figure 7). Here, up to 10

1 large nested ridges occur within a horizontal distance of 60 km. The outer ridges are 2 broad features, up to 6 km wide and 50 m high, some display pronounced crenulate or 3 zig-zag morphologies. Many of the ridges show overprinting patterns. The innermost 4 ridge is a delicate sharply defined feature, <1 km wide, with simple arcuate plan form. 5 This innermost ridge forms a remarkable unbroken loop ~ 70 km in length. Further 6 south, due west of Orkney, numerous large curvilinear ridges trend perpendicular to 7 the coastline of mainland Scotland. Here too, overprinting can be seen between these 8 ridges and those to the north. Further north, due west of Shetland (Figure 8), 9 numerous ridges form a separate set of sub-concentric nested arcs and loops. 10 Overprinting of one ridge on another can be clearly seen in places, particularly on the 11 sea bed NW of Foula. The innermost mid-shelf ridges west of Shetland are 12 approximately parallel to the present-day coastline.

13

The greatest concentration of large ridges on the UK continental shelf occurs north and east of Shetland (Figures 4, 5, 8). The northernmost ridges have irregular outlines with highly crenulated, distinctly lobate form. The largest of these extends for 30 km, is between 1 and 3 km wide, and locally exceeds 30 m in height. The nested pattern of these lobate ridges follows a broadly north-south axis. Overprinting of ridges on one another can be clearly seen.

20

Two morphologically similar mid-shelf ridges occur on the seabed southwest of St Kilda on the Hebrides Shelf (Figure 5). These large features are 30 to 40 km in length and 2 to 5 km wide. Like those west of Orkney and Shetland they have pronounced lobate and crenulated plan form, and are concave towards the east.

25

26 A further set of curvilinear, subparallel Group 2 ridges flank the western margin of the 27 Norwegian Channel trending approximately southeast-northwest. This high-density 28 cluster of ridges lies on the relatively flat sea-bed high west of the Norwegian 29 Channel and east of Shetland (Figure 5). The ridges range in length from 2 to 55 km, 30 and occur within a broad zone c. 600 km long and c. 100 km wide. The majority have 31 subtle sea-bed expression; many are less than 10 m high. Individual ridges are linear 32 or curvilinear in plan. To the north, a well-defined and distinct linear ridge occurs 33 along the Norwegian Channel margin – it has been mapped previously as the Tampen 34 Ridge (Figure 1) (Sejrup et al., 1994) and is formed of a stratigraphic unit 50 m thick and up to 7 km wide. This ridge can be traced for ~200 km along the western edge of
 the Norwegian Channel (Figure 5).

3

Group 3: The final group of ridges are those on the inner shelf, closer to the present
day coastline of Scotland, generally east of Groups 1 and 2. These smaller-scale
features range in length from 500 m to 25 km and are typically <500 m wide and <20
m high. They are widely geographically distributed and many occur as concentrations
of closely spaced ridges (Figure 5).

9

10 Immediately east of Shetland, numerous closely spaced linear and curvilinear ridges 11 occur, trending NW-SE. These features are generally concave towards the south, and 12 are best preserved within a topographic sea-bed trough, although many extend beyond 13 its lateral margins (Figure 8). Some of the landforms within the trough have clearly 14 visible zigzag morphologies whilst others are more linear. Crestline orientations are 15 strongly oblique to the trough margins and cut across topographic undulations. The 16 ridges range in length from 1 to 20 km, and exhibit intra-ridge spacings of 700 to 17 2000 m. Most ridges are well-defined features with vertical sea bed expression of 18 between 10 and 20 m.

19

20 [FIGURE 8 HERE]

21

Southeast of Shetland few clear landforms are resolved on the Olex sea-bed image. However, a cluster of subparallel linear ridges occur around 1°E, 59°N. These features range from 1.5 to 20 km in length, have heights generally <10 m, widths <100 m, and exhibit consistent spacing distances of 2.5 to 3 km. Within this population there are also shorter, WNW-ESE-trending linear ridges 1.5 to 6 km in length (Figure 3).

28

Northeast of Orkney is a cluster of short ridges, 800 m to 6 km in length, aligned
WSW-ENE. As with those east of Shetland, these 1 to 2 km-spaced ridges occur
within a topographic trough, but are aligned oblique to its margins (Figure 3).

32

In the generally flat ground northeast of the Moray Firth and northwest of the WitchGround Basin, a spatially distributed population of nearly 100 ridges is mapped. Most

are aligned generally northwest-southeast, are curvilinear in plan and less than 10 m
 in height. These ridges range in length from 1 to 35 km (Figure 5), with the exception
 of the large, arcuate, outermost ridge in this group which can be traced for 65 km.

4

5 Other well-defined small-scale Group 3 ridges occur in coastal parts of The Minch, off NW Scotland; adjacent to western Orkney; and in the Fair Isle Channel (Figure 3). 6 7 These features are considerably smaller than the ridges seen on the mid- and outer 8 shelf, being less than 10 m high and <1000 m wide. They typically range from 5 to 20 9 km in length and generally occur within ~50 km of the present-day coastline. The 10 features in The Minch and adjacent to Orkney are broadly parallel to the coastline, 11 whereas some of the ridges off the east coast of Shetland are perpendicular to the 12 coast. An assemblage of small, sharply defined, subparallel ridges occur in the Fair 13 Isle Channel. They are distinctive linear features, less than 10 m high, extending over 14 30-40 km and trending NNE-SSW (Figure 8).

15

16 Finally it should be noted that large parts of the seabed with good echosounder 17 coverage have a poor landform record. Most notably, parts of the shelf north of 18 Orkney and southwest of Shetland; the inner shelf immediately west of Lewis; the 19 shelf to the southwest of Barra; and the central core of the Witch Ground Basin. With 20 the exception of the Witch Ground Basin, which is underlain by thick Quaternary 21 sediment (Long et al., 1986), the absence of landforms is probably related to the 22 presence of crystalline bedrock at seabed in these areas (Johnson et al., 1993; Stoker 23 et al., 1993).

24

25

26 Landform interpretation

27 Sea-bed mapping based on the Olex dataset reveals over 700 geomorphological 28 features relating to glaciation of the continental shelf around the northern UK (Figures 29 4, 5). We interpret these features by comparison with glacial landsystems described 30 elsewhere (e.g. Evans, 2003), coupled with inferences from existing 31 seismostratigraphic data within the study area (e.g. Stoker and Holmes, 1991; 32 Davison, 2005; Sejrup et al., 2005). On the basis of their morphology, distribution and 33 setting we interpret the vast majority of positive linear features as end moraines 34 marking the margins of former ice masses. Whilst some of the smaller near-shore

1 features (Group 3) are distinctly straight, the majority of mapped moraines are 2 arcuate, lobate or curvilinear in form (Groups 1 and 2) – typical of features formed at 3 grounded terrestrial ice margins (e.g. Benn and Evans, 1998; Colgan et al., 2003). 4 Most studies agree that end moraine morphology closely reflects the geometry and 5 position of former ice margins. Consequently, their distribution, orientation and size are commonly used in glaciological inversion models to reconstruct the decay 6 7 dynamics of former ice sheets and glaciers (e.g. Kleman et al., 1997; Clark et al., 8 2004).

9 The population of straight, sub-parallel, sharp-crested ridges identified in the vicinity 10 of Orkney and Shetland, by contrast, more closely resemble moraines formed at the 11 subaqueous grounding line of a marine-terminating ice-sheet margin, and 12 consequently are interpreted as De Geer-type moraines (e.g. Sollid, 1989; Larsen et 13 al., 1991; Blake, 2000; Linden and Moller, 2005).

14 We interpret the negative linear features on the sea-bed as glacial meltwater channels, 15 largely on the basis of their morphology (Figure 3). Many of these landforms have 16 been previously described as tunnel valleys by numerous authors (e.g. Wingfield, 17 1990; Praeg, 2003; Lonergan et al., 2006). Although the exact mechanism of tunnel 18 valley formation is still debated, there is general agreement that these major erosional 19 features are formed by subglacial meltwater flowing more-or-less parallel to former ice flow (Ó Cofaigh, 1996). There is also evidence to suggest that the features in the 20 21 central North Sea Basin were repeatedly occupied (Lonergan et al., 2006).

22 On the basis of the geomorphology and distribution of the features, described above, 23 we have grouped the mapped features into three main assemblages. Assemblage 1 24 includes the large, broadly curvilinear moraines on the shelf edge (Group 1), and the 25 tunnel valleys (Group A) in the northern North Sea Basin that trend broadly 26 perpendicular to these moraines. Assemblage 2 comprises the strongly arcuate, lobate, 27 and often convolute, Group 2 moraines found on the mid-shelf. Assemblage 3 28 includes the Group 3 moraines and Group B channels on the inner shelf, principally 29 east and north of the Scotland. We now interpret each of these 3 assemblages in turn, 30 with reference to the last British and Fennoscandian ice sheets.

1 Assemblage 1: The major moraines on the northwestern UK continental shelf margin 2 represent substantial volumes of Pleistocene sediment relating to former, coherent, 3 shelf-wide ice-sheet glaciation. These moraines occur in direct association with major 4 shelf-edge fans such as the Sula Sgeir Fan, the Rona and Foula Wedges and the Barra-5 Donegal Fan – themselves representing large volumes of sediment deposited over a prolonged period (Stoker et al., 1993) (Figures 1, 3). We believe that this coupling of 6 7 shelf-edge moraines and trough-mouth fans is best interpreted as reflecting the 8 position of a formerly extensive continental ice sheet with overall flow towards the 9 Atlantic Ocean in the west and northwest of the study area. This geometry is 10 consistent with orientations of tunnel valleys and buried mega-scale glacial lineations 11 (MSGLs), identified in the North Sea Basin by Graham et al. (2007). When used as 12 the basis for a glaciological inversion model, these three components - moraines, 13 tunnel valleys, and MSGLs - strongly suggest, at maximum stage, an ice-sheet 14 surface across the northern North Sea Basin declining in altitude from southeast to 15 northwest. By implication, the former BIS and FIS must have been confluent at this 16 time.

Assemblage 2: The mid-shelf moraines on the West Shetland Shelf and those NE of 17 18 Shetland must have formed after the extensive shelf-edge glaciation described above, 19 most probably during a significant retreat stage. By this time the ice sheet had receded 20 and thinned sufficiently to allow topography to influence ice-flow somewhat. It is 21 notable that there are very few moraines of this stage on the low-lying shelf northwest 22 of the Witch Ground Basin. The mid-shelf moraines to the west of Orkney and 23 Shetland are lobate and highly convolute in morphology; many are strongly 24 reminiscent of push moraines and thrust-block complexes formed at the margins of 25 modern surging glaciers (Figure 7) (e.g. Clayton et al., 1985; Evans et al., 1999; 26 Evans and Rea, 2003). Although their exact genesis cannot be determined at this point 27 in time, the large number and density of these features shows that dynamically 28 oscillating lobes were common within the last BIS. Importantly, the lobate margins 29 defined by these moraines show that the ice-sheet terminus was grounded, highly 30 irregular and quite different to the form of the terminus represented by the older, 31 curvilinear, shelf-edge moraines (Figures 2 & 6). The lobate, bifurcating, overprinting 32 nature of these younger moraines indicates that ice-marginal oscillations were a 33 feature of mid-shelf deglaciation. This assertion is confirmed by seismic profiles

1 showing considerable readvances during overall recession within the moraine 2 sequence NW of Orkney (Figure 6) (Stoker and Holmes, 1991). The convolute, often 3 zigzag, form of these moraines is intriguing and may reflect marginal flow variations 4 or the outline of highly crevassed palaeo-ice margins. Significantly, the vast majority 5 of the moraines in Assemblage 2 are concave towards the UK landmass, even east of Shetland, suggesting that, by this stage, the influence of Scandinavian ice on the 6 7 overall geometry of the BIS was considerably diminished. At this time an ice sheet 8 appears to have occupied the ground north and west of the Witch Ground Basin and a 9 separate ice sheet still occupied the Norwegian Channel and its western margin. 10 However, the lowest part of the northern North Sea Basin, between the retreating BIS 11 and FIS, was probably an ice-free marine embayment.

12 Assemblage 3: The third assemblage of landforms include generally smaller-scale 13 near-shore moraines and meltwater channels that vary in alignment in different areas 14 - compare the moraines and channels adjacent to the Moray Firth and Strathmore 15 coasts, for example (Figures 1 & 3). The largest features – the Bosies Bank and Wee 16 Bankie moraine complexes – are perhaps the earliest moraines of this stage, marking 17 the transition into a more stable phase of deglaciation from the dynamically 18 oscillating behaviour immediately preceding it. During this period the Witch Ground 19 Basin was ice free and is known to have begun accumulating glaciomarine muds (c. 22-19 ka ¹⁴C BP) (Gatliff et al., 1994; Sejrup et al., 1994; 2004; Graham et al., 2007). 20 21 On the basis of highly elongate landforms in NW Scotland and Strathmore, on land 22 and on the seabed, and the deep channels at the mouth of the Moray Firth, it is likely 23 that ice streams were still active within the BIS at this time (Merritt et al., 1995; 24 Stoker and Bradwell, 2005; Golledge and Stoker, 2006). These fast-flowing outlets may have been prone to periods of flow instability – as highlighted by Merritt et al. 25 26 (1995) in the Moray Firth region. Ice streaming was probably highly effective at 27 discharging mass from the centres of ice sheet accumulation and therefore strongly 28 conditioned recession of the BIS during this time.

To summarise, we interpret the sea-bed landforms on the UK continental shelf to show a complex pattern of ice-sheet deglaciation. Extensive shelf-edge glaciation occurred first, at LGM, characterised by confluence of the British and Fennoscandian Ice Sheets. This coalescent ice sheet flowed broadly northwestwards across the northern North Sea transporting vast volumes of sediment to the continental slope, forming prominent moraines and shelf-edge fans. Subsequent oscillatory retreat of both ice sheets led to separation and the re-establishment of ice-free marine conditions in the North Sea Basin. At this time, the BIS margin was probably highly irregular – dominated by numerous, large, dynamic lobes. Final-stage deglaciation of the independent BIS was marked by near-shore ice streaming and increasing topographic control on ice-flow directions.

8

9 Discussion

10 Our results show that the glacial geomorphology on the sea bed around the northern 11 United Kingdom preserves the footprint of a retreating ice sheet that significantly re-12 organised during its decay. Whilst each of the three stages identified in this study have 13 been broadly suggested by previous workers (e.g. Boulton et al., 1977; Sejrup et al., 1994, 2005, Carr et al., 2006; Graham, 2007), no investigations to date have explicitly 14 15 attempted to unravel the complexities inherent in such an ice-sheet retreat pattern. 16 Specifically, no-one has yet identified the zone of confluence at ice-sheet maximum, 17 or the zone of pull-apart where the British and Fennoscandian ice sheets separated, or 18 the mechanism by which this happened. We believe that the Olex dataset provides the 19 best empirical evidence for ice-sheet confluence and subsequent separation and, 20 critically, enables a viable hypothesis of British Ice Sheet disintegration to be 21 proposed for the first time.

22 The bathymetric data show a broad, weakly sinuous depression extending north from 23 the Witch Ground Basin to the continental shelf margin east of Shetland (Figure 6). 24 The relative absence of moraines in this area, together with the bifurcating pattern of 25 retreat inferred from moraines to the east and west of this broad depression, suggest 26 that this zone may have been the focus for ice-sheet separation. The present 27 bathymetry indicates that the seafloor in this area would have been only 10-30 m 28 below sea level during the last global sea-level minimum (at LGM). The conjoined 29 BIS-FIS was probably sufficiently thick during early deglaciation to have been grounded in this area, despite some possible tidewater calving. However, as 30 31 deglaciation proceeded, we propose that the interplay between sea-level and the ice-32 sheet margin along this corridor would have been crucial.

1 [FIGURE 9 HERE]

2 Calving is known to be responsible for the majority of mass loss in contemporary ice 3 sheets (Reeh, 1968; Paterson, 1994), and so was probably equally important in palaeo-4 ice sheets such as the BIS-FIS. Floating ice is considerably more vulnerable to rapid 5 collapse than grounded ice, since the highly viscous nature of ice means that stresses 6 are transmitted throughout an ice shelf almost instantly. 'Debuttressing' occurs when 7 ice shelves calve resulting in an acceleration of grounded ice flow and an increase in 8 ice supply to the calving front, consequently leading to further mass loss (e.g. Mercer, 9 1978; Paterson, 1994; Alley et al., 2005).

10 In light of the above, it is evident that if calving were to initiate along a sector of the 11 margin of the former BIS-FIS, significant mass might be drawn-down from the 12 interior of the ice sheet in the North Sea Basin. Overall surface lowering would be 13 greatest nearer to the calving front, with lesser effects in grounded ice away from the 14 margins. Initial calving may have been triggered by glacio-isostatic depression that 15 produced rising relative sea levels in the period after the maximal ice volume occurred 16 (cf. P.U. Clark et al., 2004). We suggest that, an initially small calving sector of the 17 confluent BIS-FIS margin propagated southward, governed by the greater water 18 depths east of Shetland and in the Witch Ground Basin, leading to the development of 19 a large calving bay in the northern North Sea Basin (Figure 9). Rapid recession forced 20 both grounded ice masses to re-organise, as surface lowering close to the calving bay 21 led to a change in overall surface slope of the BIS. Changing flow directions as a 22 result of this ice sheet re-organisation probably led to the formation of well-developed 23 moraines north and east of Shetland. That this period of re-organisation is preserved 24 in the geomorphic record as large, lobate, readvance moraines may suggest that the 25 readjusting ice sheet was in a state of considerable disequilibrium. It was also during 26 this episode that the De Geer moraines around Orkney and Shetland were formed – 27 indicative of a tidewater margin. Final separation of the ice sheets occurred when sea 28 levels had risen sufficiently to inundate the Witch Ground Basin, causing 29 glaciomarine deposition. The subsequent marginal retreat of the British Ice Sheet may 30 have been relatively rapid - dominated in eastern Scotland by ice stream activity in 31 the Moray Firth, the Firth of Forth and Strathmore.

1 We have proposed a new model for the geometry of the confluent BIS-FIS at its 2 maximum. We have also described the subsequent ice-sheet separation, 3 reconfiguration and demise based on entirely new empirical evidence (Figures 4, 5). 4 The validity of this hypothesis can be evaluated by comparison with other global 5 accounts of ice sheet demise. The Laurentide Ice Sheet has been investigated extensively, and the repeated delivery of ice from its interior to its calving bays - via 6 7 'Binge-Purge' cycles - is now widely accepted (Heinrich, 1988; MacAyeal, 1993; 8 Andrews and Maclean, 2003). Indeed, calving bays along the eastern Laurentide Ice 9 Sheet margin are thought to have been instrumental in its eventual disintegration 10 (Hughes et al., 1977; Thomas, 1977; Hughes, 2002; Shaw et al., 2006). Similar 11 mechanisms have been proposed for the Fennoscandian Ice Sheet (Hoppe, 1948) and 12 for the Barents Sea Ice Sheet (Siegert et al., 2002). Modern analogues also exist: the 13 Larsen B Ice Shelf in West Antarctica collapsed rapidly in 2002 leading to the 14 development of a large calving bay and changing the flow dynamics of the surrounding glaciers (Rack and Rott, 2004; Scambos et al., 2004). The fast-flowing 15 16 Pine Island and Thwaites Glaciers on the Amundsen Coast of West Antarctica are 17 currently undergoing rapid thinning and increased draw-down as a result of recent 18 sea-level rise (Payne et al., 2004; Thomas et al., 2004). It remains uncertain how the 19 flow dynamics of the West Antarctic Ice Sheet will be affected by these rapid 20 changes. Modern glaciers in Greenland are experiencing accelerated calving rates 21 associated with enhanced melting, rapid flow and thinning (Zwally et al., 2002). In 22 Alaska, the Columbia Glacier is also known to have experienced a recent abrupt 23 increase in calving rate as a result of surface lowering (van der Veen, 1996). Hence, 24 we suggest, it would be unusual if disintegration of the marine-terminating sectors of 25 the BIS had not involved substantial calving and subsequent draw-down. Studies in 26 Ireland lend further plausibility to this suggestion. McCabe and co-workers postulate 27 that Irish Sea deglaciation was triggered by an isostatically induced rise in relative sea 28 level, perhaps occurring in as little as 500 years (McCabe and Clark, 1998; P.U. Clark 29 et al., 2004; McCabe et al., 2005); whilst in the Irish Midlands, Delaney (2002) 30 describes scenarios in which flooding of a central area of low ground was 31 instrumental in the re-organisation of the Irish Ice Sheet. We propose that the calving-32 bay mechanism provides a plausible explanation for the geomorphic evidence present 33 in the study area described here. Furthermore, that calving and unzipping was 34 principally focused along a north-south axis east of Shetland extending as far south as the Witch Ground Basin (Figure 9). This new insight provides a radically revised
 framework for BIS research, and a testable hypothesis for future modelling
 experiments.

- 4
- 5

6 Synthesis : combining the evidence

Seismostratigraphic evidence from the North Sea shows that a grounded ice sheet flowed approximately northwest across the Witch Ground Basin (Graham et al., 2007). During this extensive period of ice-sheet glaciation, ice from Scandinavia coalesced with the BIS in the North Sea Basin (Sejrup et al., 2005). The presence of buried MSGLs in the Witch Ground Basin, dated stratigraphically to 22-28 ka ¹⁴C BP, have been used to infer the presence of fast ice-sheet flow in this area. However, no surface expression of fast flow exists in this area today (Figure 4).

14

15 We present a reconstruction of the conjoined BIS-FIS during the LGM, around 25-30 16 ka BP (Figure 10). During periods of maximum glaciation, when the FIS overspilled 17 the Norwegian Channel, we suggest that Fennoscandian ice flowed west into the 18 North Sea Basin and coalesced with ice from the eastern margins of the BIS. This 19 coalescent, convergent flow resulted in a fast-flow corridor across deformable 20 sediment in the lowest part of the basin (CZ, Figure 10). The presence of NW-21 orientated convergent MSGLs in the Witch Ground Basin (Graham et al., 2007); a 22 widespread deformable bed; and the presence of large shelf-edge fans (Rona and 23 Foula Wedges); are all consistent with a palaeo-ice stream flowing NW across the 24 northern North Sea Basin. The reconstructed coalescent FIS-BIS is reinforced by its 25 glaciological plausibility (Figure 8); with convergent flow focused in the low-lying 26 corridor between Orkney and Shetland. The presence of strongly streamlined bedrock 27 forms on Orkney, Shetland and Fair Isle indicate the former passage of a powerful ice 28 sheet in a northwesterly direction (Peach and Horne, 1879, 1880; Hoppe, 1974; 29 Mykura, 1976; Golledge et al., 2008). The presence of rare Norwegian erratics is also 30 consistent with a far-travelled ice stream crossing these islands during the last 31 glaciation (Finlay, 1926; Mykura, 1976; Birnie et al., 1993).

32

33 [FIGURE 10 HERE]

1 Although this scenario has been previously challenged by numerous authors, we think 2 opposing views can be reconciled when new geomorphological dataset from the 3 whole continental shelf is considered. Examination of the wider picture during this 4 glacial maximum event shows a concordant ice-flow pattern across much of northern 5 and eastern Scotland. Glacial bedforms and striae in Strathmore and the inner Moray 6 Firth suggest ice streams flowing in a northeasterly direction before being deflected 7 northwest (Figure 10). The deflection of the Moray Firth ice stream northwest across 8 Caithness has often been cited as evidence that the FIS occupied the northern North 9 Sea Basin at this time (Peach and Horne, 1879; Hall and Bent, 1990; Carr et al., 10 2006). Far-travelled erratics, glacial striae and elongate bedforms in Orkney 11 indicating WNW flow are all best explained by our revised BIS reconstruction – with 12 ice flowing NE from the northeast Scottish mainland, before converging and being 13 deflected to the NW by the more powerful FIS. At this time the zone of confluence 14 between the BIS and the much larger FIS probably lay across the northern Orkney 15 Islands (Figure 10).

16

The timing of confluent shelf-edge BIS-FIS glaciation is not well constrained. 17 18 However, it is likely to have occurred after Heinrich Event 3 and before Heinrich 19 Event 2 (i.e. between 32-24 ka BP). Seismostratigraphic evidence from the West 20 Shetland Shelf shows that the moraines within the Otter Bank Formation formed 21 during the Late Weichselian (Stoker et al., 1993). Sediment sequences on the Rona 22 and Foula Wedges also demonstrate ice-proximal deposition at the shelf edge during 23 the Late Weichselian (MIS 2) (Stoker et al., 1993, 1994). This evidence, combined 24 with other moraines mapped in this study, indicate that the last BIS-FIS reached the 25 continental-shelf edge west of Orkney and Shetland at LGM. Previously published 26 radiocarbon dates from marine fauna place the moraines south of St Kilda, associated 27 with the Barra-Donegal Fan, within the same period (i.e. MIS 2) (Selby, 1989; 28 Peacock et al., 1992). The Barra Fan largely comprises sediment sourced in SW Scotland and NW Ireland and shows a major increase in ice-rafted debris c. 27 ka BP 29 30 (Kroon et al., 2000; Knutz et al., 2001; Peck et al., 2007). NW of Lewis, however, 31 moraines at the shelf edge adjacent to the Sula Sgeir Fan, are overlain by deposits of 32 probable MIS 4 age (Stoker, 1995). However, given the wider evidence for shelf-edge MIS 2 glaciation to the north and south, it is likely that this Amino-acid age-33 34 assessment is in need of revision. Other ice-sheet flow lines relating to the BIS at 1 maximum stage are inferred based on bathymetry, seafloor geomorphology and 2 unpublished BGS mapping. Some of those relating to the FIS have been taken from 3 previously published work (Sejrup et al., 1994; Ottesen et al., 2005). Crucially, we 4 suggest that our new ice-sheet reconstruction is the most likely scenario for the BIS at 5 LGM (Figure 10), and that this scenario is entirely consistent with most of the 6 previously published evidence.

7

8 Following extensive shelf-edge glaciation, at LGM, the BIS underwent a period of 9 large-scale re-organization (Figure 11). We propose that this ice-mass re-organization 10 was largely the result of rapidly rising sea levels (Figure 9), probably owing to glacioisostatic loading, causing major changes in ice-sheet configuration and flow 11 12 dynamics. It is possible that this re-organisation was closely associated with the North 13 Atlantic iceberg-discharge event - Heinrich Event 2 (c. 24 ka BP; cf. Bond et al., 1993; Peck et al., 2007). However, current dating constraints do not permit more 14 certainty on this linkage. During this stage, both ice sheets underwent rapid recession, 15 16 we suggest largely as a result of calving into a marine embayment. As this embayment 17 opened, along a north-south axis east of Shetland, both ice-sheet margins receded c. 18 100 km back towards higher ground, probably over a relatively short period of time (Figure 11). Sea water had inundated the Witch Ground Basin by ~ 20 ka ¹⁴C BP (~ 24 19 ka cal BP) (Sejrup et al., 1994; Graham et al., 2007). As the BIS re-organized, ice 20 21 divides migrated rapidly. Large ice-sheet-lobe moraines on the mid-shelf west of 22 Orkney suggest that this northwestern margin was dynamically unstable during 23 overall ice-sheet re-organization. The innermost moraine loop off Orkney has sharp 24 fresh-looking morphology and is clearly the youngest ice-sheet moraine in this suite. 25 However, the absence of similar lobate moraines on the seafloor east of Orkney 26 suggest that these islands did not host an independent active ice cap during this time, 27 and that the dynamic behaviour was probably a short-lived consequence of ice-sheet 28 readjustment. By contrast, large lobate moraines north, east and west of Shetland 29 suggest that these islands maintained an independent, dynamic ice cap during this 30 deglacial stage (Figure 11) – a model in line with many previous findings (e.g. Hoppe, 31 1974; Mykura, 1976; Long et al., 2004; Carr et al., 2006; Golledge et al., 2008). The 32 large size and linear morphology of the Bosies Bank and Wee Bankie moraine complexes suggest a considerable period of ice-sheet stability. We suggest that these 33 34 moraines, previously attributed to the 'Last Glacial Maximum' (e.g. Sutherland, 1984;

Bowen et al., 2002), represent a readvance of the BIS in the aftermath of major ice sheet re-organization (Figure 11). This latter episode probably occurred after Heinrich
 Event 2 and before Heinrich Event 1, between c.18-24 ka BP.

4

5 [FIGURE 11 HERE]

6

7 In summary, we have reconstructed a new model for the glaciation and subsequent 8 deglaciation of the northern UK and the surrounding continental shelf (Figures 10, 9 11). At LGM the reconstructed BIS was coalescent with the FIS in the northern North 10 Sea and was drained by several ice streams – the most dominant of these, fed from 11 western Norway and eastern Scotland, flowed NW across the Witch Ground Basin to 12 the continental-shelf edge west of Shetland. We propose that following relative sea-13 level rise, the BIS-FIS broke apart and re-organized into two independent ice sheets 14 which may have remained unstable for some time as they adjusted to new boundary 15 conditions (Figure 11). Widespread, dynamic, ice-margin oscillations probably 16 occurred in response to this re-organisation. Final-stage deglaciation was marked by 17 ice-sheet thinning and increasing topographic control on ice-flow dynamics in the 18 BIS. This stage was also typified by near-shore ice streaming and numerous ice-19 marginal oscillations in east and west Scotland.

20

We believe that this 3-stage model explains the long-standing apparent contradiction between those who have argued for ice-free conditions in the North Sea Basin at LGM and those who have argued against. Crucially, our new interpretation, based on shelf-wide sea-bed imagery (Olex), suggests that the period of ice-sheet separation was one of dynamic instability – ultimately leading to large-scale ice-sheet collapse in the North Sea Basin.

27

28

29 Conclusions

30

Access to the entire Olex echosounder dataset has revealed the geomorphology of the sea floor around the northern UK in unprecedented detail. From this, and the wider evidence, we have drawn the following conclusions regarding the British Ice Sheet at Last Glacial Maximum:

- 1
- 2

3

1. A large number of previously unidentified geomorphic features relating to the last ice sheet occur on the continental shelf around the northern UK.

4 2. The BIS was coalescent with the FIS during a relatively recent phase of 5 extensive ice-sheet glaciation. NW-oriented MSGLs of Late Devensian/Late 6 Weichselian age and NW-oriented tunnel valleys in the northern North Sea, 7 coupled with large shelf-edge moraines west of Shetland, north and west of 8 Lewis and south of St Kilda, dated to MIS 2, all indicate an extensive 9 glaciation between c. 30-25 ka BP. This was also a time when large shelf-edge 10 fans received a major increase in glacially derived sedimentation. This 11 interpretation is consistent with previously published geological evidence from 12 the western sector of the FIS. We propose that at LGM the zone of ice-sheet 13 confluence probably stretched from 1°deg E longitude, NW across the 14 northern Orkney Islands, to the shelf edge west of Shetland. Fast-flowing 15 confluent ice in the Fair Isle Channel during this time would have focused sediment delivery to the Rona and Foula Wedges. 16

17 3. Ice-sheet retreat occurred primarily by calving as a result of rising sea levels. 18 We suggest that, during abrupt relative sea-level rise around the time of 19 Heinrich-2 (c. 24 ka BP), a large marine embayment opened in the northern 20 North Sea, as far south as the Witch Ground Basin. This marine embayment 21 changed the entire configuration of the two ice sheets forcing them to 22 decouple rapidly along a north-south axis east of Shetland. Similarities are 23 striking between this scenario and the ongoing, rapid, break-up of marine-24 terminating parts of the West Antarctic Ice Sheet.

4. The northern sector of the last BIS underwent a remarkable period of ice-sheet
re-organisation in response to the opening of a large marine embayment
centred on the Witch Ground Basin. Dynamic ice-front oscillations – deduced
from overprinted lobate moraine patterns and seismic stratigraphy – occurred
during this period as the BIS rapidly adjusted to new quasi-stable margin
positions.

5. A period of relative stability followed, when the BIS margin was situated in
 the vicinity of the Bosies Bank–Wee Bankie moraine complex off eastern
 Scotland. This ice-sheet configuration probably equates to the traditional

- 'LGM' c. 18-24 ka BP with an ice-free North Sea Basin and a substantial ice cap on Shetland.
- 6. Ice-sheet thinning and punctuated retreat continued, increasing topographic
 control and invigorating several near-shore ice streams. Around 16 ka BP,
 following Heinrich Event 1, the BIS margin was stably situated at the presentday coastline in NW Scotland. Subsequent ice-sheet retreat was probably
 slower and took place primarily by melting, rather than calving.
- 8 7. We suggest that this new 3-stage reconstruction of the northern half of the last
 9 BIS offers a glaciologically plausible model which reconciles much of the
 10 previously published, apparently contradictory, evidence from the wider area.
- 11 12

1

2

13 Acknowledgements

We thank Clive Auton and Chris Thomas for their comments on an earlier version of this manuscript. The comments of Andrew Miall and three anonymous reviewers helped to clarify aspects of this work. Bob Gatliff and Martin Smith are thanked for their continuing supporting of this project. Published with the permission of the executive Director, BGS (NERC).

- 19
- 20

21 **References**

23	Alley, R. B., Clark, P.U., Huybrechts, P., Joughin, I., 2005. Ice-sheet and sea-level
24	changes. Science 310, 456–460.

- Andrews, I.J., Long, D., Richards, P.C., Thomson, A.R., Brown, S., Chesher, J.A.,
 McCormac, M., 1990. United Kingdom offshore regional report: The Geology
 of the Moray Firth. HMSO for the British Geological Survey. London, 93pp.
 Andrews, J.T., Maclean, B., 2003. Hudson Strait ice streams: a review of stratigraphy,
- chronology and links with North Atlantic Heinrich events. Boreas 32, 4-17.
 Armstrong, M., Paterson, I.B., Browne, M.A.E., 1985. Geology of the Perth and
- Dundee District. 1:50,000 geological sheets 48W, 48E, 49. Memoirs of the
 British Geological Survey (Scotland), London, HMSO, 108pp.
- Austin, W.E.N., Kroon, D., 1996. Late glacial sedimentology, foraminifera and stable
 isotope stratigraphy of the Hebridean Continental Shelf, northwest Scotland.
 In: J.T. Andrews, Austin, W.E.N., Bergsten, H. and Jennings, A.E. (Editor),
 Late Quaternary Palaeoceanography of the North Atlantic Margins. Geological
 Society, London, pp187-213.
- Auton, C.A., 2003. The Quaternary and Devonian geology of Sheet 115 (Reay).
 British Geological Survey Commisioned Report, CR/03/030, pp68.

1	Ballantyne, C.K., McCarroll, D., Nesje, A., Dahl, S.O., Stone, J.O., Fifield, L.K.,					
2	1998. High-resolution reconstruction of the last ice sheet in NW Scotland					
3	Terra Nova 10, 63–67.					
4	Benn, D.I., Evans, D.J.A., 1998. Glaciers and Glaciation. London: Arnold, 734pp.					
5	Birnie, J., Gordon, J.E., Bennett, K., Hall, A.M., 1993. The Ouaternary of Shetland:					
6	Field Guide. Cambridge: Quaternary Research Association.					
7	Blake, K. P., 2000. Common origin for De Geer moraines of variable composition in					
8	Raudvassdalen, northern Norway. Journal of Ouaternary Science 15. 633–644.					
9	Bond, G., Broecker, W., Johnsen, S., McManus, J., Labevrie L. Jourzel J. Bonani					
10	G., 1993. Correlations between climate records from North Atlantic sediments					
11	and Greenland ice. Nature, 365, 143-147.					
12	Bos J., A.A. Dickson, J.H., Coope, G.R., Jardine, W.G., 2004. Flora, fauna and					
13	climate of Scotland during the Weichselian Middle Pleniglacial—					
14	Palynological, macrofossil and coleopteran investigations. Palaeogeography.					
15	Palaeoclimatology, Palaeoecology 204, 65–100.					
16	Boulton, G.S., Hagdorn, M., 2006, Glaciology of the British Isles during the last					
17	glacial cycle: form. flow, streams and lobes. Ouaternary Science Reviews 25.					
18	3359-3390.					
19	Boulton, G.S., Jones, A.S., Clayton, K.M., Kenning, M.J., 1977, A British ice sheet					
20	model and patterns of glacial erosion and deposition In: Shotton F W (Ed)					
21	British Quaternary Studies: Recent Advances Oxford University Press					
22	Oxford pp231–246					
23	Boulton G S Smith G D Jones A S Newsome I 1985 Glacial geology and					
24	glaciology of the last mid-latitude ice sheets. Journal of the Geological					
25	Society London 142 447–474					
26	Boulton, G. S., Peacock, J. D., Sutherland, D. G., 1991, Ouaternary, In: Craig, G. Y.					
27	(Ed.), Geology of Scotland, 3 rd edition. The Geological Society. London.					
28	pp503-543.					
29	Boulton, G.S., Peacock, J.D., Sutherland, D.G., 2002. Quaternary. In: Trewin, N.H.					
30	(Ed.) The Geology of Scotland, 4 th edition. The Geological Society, London,					
31	pp409-431.					
32	Bowen, D.Q. 1989. The last interglacial-glacial cycle in the British Isles. Quaternary					
33	International, 3-4, 41-7.					
34	Bowen, D.Q. 1999. A revised correlation of Quaternary deposits in the British Isles.					
35	Geological Survey Special Report, 23.					
36	Bowen, D.O., McCabe, A.M., Rose, J., Sutherland, D., 1986. Correlation of					
37	Quaternary Glaciations in England, Ireland, Scotland and Wales. In: Sibrava,					
38	B., Bowen, D.Q., Richmond, G.M. (Eds.), Quaternary Glaciations in the					
39	Northern Hemisphere. International Geological Correlation Programme					
40	Project No. 24, Quaternary Science Reviews 5, 199–340.					
41	Bowen, D.O., Phillips, F.M., McCabe, A.M., Knutz, P.C., Sykes, G.A., 2002. New					
42	data for the Last Glacial Maximum in Great Britain and Ireland. Ouaternary					
43	Science Reviews 21, 89-101.					
44	Bradwell, T., Stoker, M.S., Larter, R., 2007, Geomorphological signature and flow					
45	dynamics of The Minch palaeo-ice stream, NW Scotland, Journal of					
46	Ouaternary Science, 22, 609-622.					
47	Brown., E.J., Rose, J., Coope, R. Lowe, J.J., 2007. An MIS 3 age organic deposit					
48	from Balglass Burn, central Scotland: nalaeoenvironmental significance and					
49	implications for the timing of the onset of the LGM ice sheet in the vicinity of					
50	the British Isles. Journal of Quaternary Science 22, 295-308.					

1 2 3 4 5 6 7 8 9 10	 Bulat, J., Long, D., 2001. Images of the seabed in the Faroe-Shetland Channel from commercial 3D seismic data. Marine Geophysical Researches 22, 345-367. Cameron, T.D.J, Stoker, M.S., Long, D., 1987. The history of Quaternary sedimentation in the UK sector of the North Sea basin. Journal of the Geological Society, London 144, 43-58. Carr, S.J., Holmes, R., van der Meer, J. J. M., Rose, J., 2006. The Last Glacial Maximum in the North Sea Basin: micromorphological evidence of extensive glaciation. Journal of Quaternary Science 21, 131-153 Clapperton, C.M., 1970. The pattern of deglaciation in part of North Northumberland. Transactions of the Institute of British Geographers 45, 67-78.
11	Clark, C.D., Evans, D.J.A., Khatwa, A., Bradwell, T., Jordan, C.J., Marsh, S.H.,
12 13 14	Mitchell, W.A., Bateman, M.D., 2004. BRITICE: Map and GIS database of landforms and features related to the last British Ice Sheet. Boreas 33, 359-375.
15 16 17 18 19 20 21 22 23 24 25	 Clark, P. U., McCabe, A. M., Mix, A.C., Weaver, A. J., 2004. Rapid rise of sea level 19,000 years ago and its global implications. Science 304, 1141–1144. Clayton, L., Teller, J.T., Attig, J.W., 1985. Surging of the southwestern part of the Laurentide Ice Sheet. Boreas 14, 235-241. Colgan, P.M., Mickelson, D.M., Cutler, P.M., 2003. Ice-marginal terrestrial landsystems: southern Laurentide Ice Sheet margin. In: Evans, D.J.A. (Ed.), Glacial Landsystems. London: Arnold, pp111-142. Cullingford, R.A., Smith, D.E., 1980. Late Devensian raised shorelines in Angus and Kincardineshire, Scotland. Boreas 9, 21-38. Davison, S., 2005. Reconstructing the Last Pleistocene (Late Devensian) Glaciation on the Continental Margin of Northwest Britain. Unpublished PhD thesis.
26 27 28 29	University of Edinburgh. Davison, S., Stoker, M.S., 2002. Late Pleistocene glacially-influenced deep-marine sedimentation off NW Britain: implications for the rock record. Special Publication Geological Society of London 203, 129-148.
30 31 32 33 34	 Delaney, C., 2002. Sedimentology of a glaciofluvial landsystem, Lough Ree area, Central Ireland: implications for ice margin characteristics during Devensian deglaciation. Sedimentary Geology 149, 111–126. Ehlers, J., Wingfield, R., 1991. The extension of the Late Weichselian/Late Devensian ice sheets in the North Sea Basin. Journal of Ouaternary Science 6, 313-326.
35 36 37 38 39	 Evans, D.J.A., 2003. Glacial Landsystems. Hodder Arnold, London, 532 pp. Evans, D.J.A., Rea, B.R., 2003. Surging glacier landsystem. In: Evans, D.J.A. Glacial Landsystems. Hodder Arnold, London, pp259-289. Evans, D.J.A., Lemmen, D.S., Rea, B.R., 1999. Glacial landsystems of the southwest Laurentide ice sheet: Modern Icelandic analogues. Journal of Quaternary
40 41 42 43	 Science 14, 673-679. Evans, D.J.A. Clark, C.D., Mitchell, W.A., 2005. The last British Ice Sheet: A review of the evidence utilised in the compilation of the Glacial Map of Britain. Earth Science Reviews 70, 252-312.
44 45 46 47 48	 Everest, J. D., Bradwell, T., Golledge, N.R., 2005. Subglacial bedforms of the Tweed palaeo-ice stream. Scottish Geographical Journal 121, 163-173. Everest, J.D., Bradwell, T., Fogwill, C.J., Kubik, P.W., 2006. Cosmogenic ¹⁰Be age constraints from the Wester Ross Readvance Moraine: insights into British Ice Sheet behaviour. Geografiska Annaler 88A, 9-17.

1	Fabel, D., Stroeven, A.P., Harbor, J., Kleman, J., Elmore, D., Fink, D., 2002.					
2	Landscape preservation under ice sheets. Earth and Planetary Science Letters					
3	201, 397-406.					
4	Fairbanks, R.G., Richard] Mortlock, R.A., Chiu, T-C., Cao, L., Kaplan, A.,					
5	Guilderson, T.P., Fairbanks, T.W., Bloom, A.L., 2005. Marine radiocarbon					
6	calibration curve spanning 0 to 50,000 years B.P. based on paired					
7	²³⁰ Th/ ²³⁴ U/ ²³⁸ U and ¹⁴ C dates on pristine corals. Quaternary Science Reviews					
8	24, 1781-1796.					
9	Finlay, T.M., 1926. A töngsbergite boulder from the boulder clay of Shetland.					
10	Transactions of the Edinburgh Geological Society 12, 180.					
11	Fitch, S., Thomson, K., Gaffney, V., 2005. Late Pleistocene and Holocene					
12	depositional systems and the palaeogeography of the Dogger Bank, North Sea.					
13	Quaternary Research 64,185-196.					
14	Flinn, D., 1978. The most recent glaciation of the Orkney-Shetland Channel and					
15	adjacent regions. Scottish Journal of Geology 14, 109-123.					
16	Gatliff, R.W., Richards, P.C., Smith, K., Graham, C.C., McCormac, M., Smith,					
17	N.J.P., Jeffery, D., Long, D., Cameron, T.D.J., Evans, D., Stevenson, A.G.,					
18	Bulat, J., Ritchie, J.D., 1994. British Geological Survey: United Kingdom					
19	offshore regional report: the geology of the central North Sea, London:					
20	HMSO.					
21	Golledge, N.R., Stoker, M., 2006. A palaeo-ice stream of the British Ice Sheet in					
22	eastern Scotland Boreas 35, 231-243.					
23	Golledge, N. R., Finlayson, A., Bradwell, T., Everest, J. D. 2008. The last glaciation					
24	of Shetland, North Atlantic. Geografiska Annaler 90A, tbc.					
25	Gordon, J. E., Sutherland, D. G., 1993. Quaternary of Scotland. Chapman and Hall,					
26	London, 695pp.					
27	Graham, A.G.C., 2007. Reconstructing Pleistocene glacial environments in the central					
28	North Sea using 3D seismic and borehole data. Unpublished PhD thesis.					
29	Imperial College London.					
30	Graham, A. G. C., Lonergan, L., Stoker, M. S., 2007. Evidence for Late Pleistocene					
31	ice stream activity in the Witch Ground Basin, central North Sea, from 3D					
32	seismic reflection data. Quaternary Science Reviews 26, 627-643.					
33	Graham, D.K., Harland, R., Gregory, D.M., Long, D., Morton, A.C., 1990. The					
34	biostratigraphy and chronostratigraphy of BGS Borehole 78/4, North Minch.					
35	Scottish Journal of Geology, $26, 65-75$.					
30	Hall, A. M., Bent, A. J. A., 1990. The limits of the last British ice sheet in northern					
3/ 20	Scotland and the adjacent shell. Quaternary Newsletter 61, 2-12.					
20 20	atroam in a landacena of calactive linear erasion: Clan Aven, Cairmaarm					
39 40	Mountaing Sectland Deress 22, 101, 208					
40	Hell A M. Jarvis J. 1080. A preliminary report on the Late Devension classiomerine.					
41	dengite around St Forgue, Crempion Degion, Ousternary, Noveletter 50, 5, 7					
42	Hall A M. Whittington G. 1080 Late Devension glasisticn of southern Caithness					
43	Southern Calumess.					
44	Hall A M Deseash LD Connell E D 2003 New data for the Last Classic					
45	Maximum in Great Britain and Iraland: a Spottish perspective on the paper by					
40 47	Rowen et al. (2002) Quaternary Science Reviews 22, 1551–1554					
48	Hedges R E M Millard A R 1995 Bones and groundwater: towards the modelling					
49	of diagenetic processes Journal of Archaeological Science 22, 155-64					
17	or angenetic processes, southar or menacological belence 22, 155-04.					

1	Heinrich, H., 1988. Origin and consequences of cyclic ice rafting in the northeast					
2	Atlantic Ocean during the past 130,000 years. Quaternary Research 29, 412-					
3	152.					
4	Higham, T.F.G., Jacobi, R.M., Ramsey, C.B., 2006. AMS Radiocarbon dating of					
5	ancient bone using ultrafiltration. Radiocarbon 48, 179-195.					
6	Holmes, R., 1977. Quaternary deposits of the central North Sea, 5. Quaternary					
7	geology of the UK sector of the North Sea between 56° and 58° North. Report					
8	of the Institute of Geological Sciences 77/14.					
9	Holmes, R., 1997. Quaternary stratigraphy: the offshore record. In: J.E. Gordon					
10	(Editor), Reflections on the Ice Age in Scotland. Scottish Natural Heritage,					
11	Glasgow, pp72–94.					
12	Holmes, R., Bulat, J., Hamilton, I., Long, D., 2003. Morphology of an ice-sheet limit					
13	and constructional glacially fed slope front, Faeroe-Shetland margin. In: J.W.					
14	Mienert, P. (Ed.), European Margin Sediment Dynamics: Side-Scan Sonar and					
15	Seismic Images. Springer-Verlag, Berlin, pp149–151.					
10	Hoppe, G., 1948. Isrecessionen fran Norbottens Kustiand i belysning av de glaciala					
1 / 1 0	Institutione 20, 112nn					
10	Honne G 1074 The globic history of the Shotland Islands Institute of Pritish					
20	noppe, G., 1974. The glacial history of the Shetiand Islands. Institute of British					
20	geographers Special Publication No. /. Hughes T 2002 Calving bass Quaternary Science Deviews 21, 267, 282					
$\frac{21}{22}$	Huuse M. Lydda Anderson H. 2000 Overdeenened Overersory valleys in the					
$\frac{22}{23}$	eastern Danish North Sea: morphology and origin Quaternary Science					
24	Reviews 19 1233-1253					
25	Jacobi, R.M., Rowe, P.J., Gilmour, M.A., Grün, R., Atkinson, T.C., 1998.					
26	Radiometric dating of the Middle Palaeolithic tool industry and associated					
27	fauna of Pin Hole Cave, Creswell Crags, England. Journal of Quaternary					
28	Science 13, 29-42.					
29	Jardine, W.G., Dickson, J.H., Haughton, P.D.W., Harkness, D.D., Bowen D.Q.,					
30	Sykes, G.A., 1988. A late Middle Devensian interstadial site at Sourlie, near					
31	Irvine, Strathclyde. Scottish Journal of Geology 24, 288–295.					
32	Johnson, H., Richards, P.C., Long, D., Graham, C.C., 1993. United Kingdom offshore					
33	regional report: the geology of the northern North Sea., HMSO, London.					
34	Johnstone, G. S., Mykura, W., 1989. The Northern Highlands of Scotland, 4 th					
35	Edition. HMSO for the British Geological Survey, Edinburgh.					
36	Kleman, J., Glasser, N., 2007. The subglacial thermal organisation (STO) of ice					
37	sheets. Quaternary Science Reviews, 26: 587-597.					
38	Kleman, J., Hättestrand, C., Borgstrom, I., Stroeven, A., 1997. Fennoscandian					
39	palaeoglaciology reconstructed using a glacial geological inversion model.					
40	Journal of Glaciology 43, 283–299.					
41	Knutz, P.C., Austin, W.E.N., Jones, E.J.W., 2001. Millennial-scale depositional					
42	cycles related to British ice Sneet variability and North Atlantic nelessireulation since 45 lum D. Dama Fon U.V. margin Balassenagraphy					
43	16 52 64					
44	10, 55-04. Knutz P.K. Jones F.J. Austin W.F.N. von Weering T.C.F. 2002 Clasimarina					
43 46	slope sedimentation contourite drifts and bottom current nathways on the					
+0 47	Barra Fan LIK North Atlantic margin Marine Geology 188 120–146					
48	Kroon D Shimmield G Austin WEN Derrick S Knutz P Shimmield T					
49	2000. Century- to millennial-scale sedimentological-geochemical records of					

1	glacial-Holocene sediment variations from the Barra Fan (NE Atlantic).					
2	Journal of the Geological Society, London 157, 643-653.					
3	Lambeck, K., 1991. Glacial rebound and sea level change in the British Isles. Terra					
4	Nova 3, 379-389.					
5	Lambeck, K., 1993. Glacial rebound of the British Isles: 2. A high-resolution, high					
6	precision model. Geophysical Journal International 15, 960–990.					
7	Lambeck, K., 1995. Late Devensian and Holocene shorelines of the British Isles and					
8	North Sea from models of glacio-hydro-isostatic rebound. Journal of the					
9	Geological Society, London 152, 437-448.					
10	Larsen, E., Longva, O., Follestad, B.A., 1991. Formation of De Geer moraines and					
11	implications for deglaciation dynamics. Journal of Quaternary Science 6, 263-					
12	2/7.					
13	Lawson, I. J., 1984. Reindeer in the Scottish Quaternary. Quaternary Newsletter 42,					
14						
15	Lenmann, S.J., Jones, G.A., Keigwin, L.D., Andersen, E.S., Butenkoi, G., Østmo,					
10	S.K., 1991. Initiation of Fennoscandian ice-sheet retreat during the last					
l / 10	deglaciation. Nature 349, 513-516.					
10	Linden, M., Moller, P. 2005. Marginal formation of De Geer moralnes and their					
20	Ousternery Science 20, 112, 122					
20	Qualefiliary Science 20, 115–155.					
21	vallage in the control North See basin: 2 D morphology and evolution Journal					
22	of Ousternary Science 21, 801-003					
23	UI Qualefiliary Science 21, 691-905. Long D Bent A Harland B Gragory DM Graham DV Morton A C 1096					
2 4 25	Long, D., Bent, M., Harland, K., Oregory, D.M., Granam, D.K., Worton, M.C., 1960.					
25	vibrocore from the Witch Ground Basin central North Sea Marine Geology					
20	73 109-123					
28	Long D Bulat I Stoker M S 2004 Sea bed morphology of the Faro-Shetland					
29	Channel derived from 3D seismic datasets In: Davies R I Cartwright I A					
30	Stewart S A Lappin M and Underhill J R (Eds.) 3D Seismic Technology					
31	application to the exploration of sedimentary basins. Geological Society of					
32	London Memoir 29, 53-61.					
33	MacAyeal, D. R., 1993. Binge/purge oscillations of the Laurentide Ice Sheet as a					
34	cause of the North Atlantic's Heinrich events. Paleoceanography 8, 775–784.					
35	McCabe, A.M., Clark, P.U., 1998. Ice-sheet variability around the North Atlantic					
36	Ocean during the last glaciation. Nature 392, 373-377.					
37	McCabe, A. M., Knight, J., McCarron, S. 1998. Evidence for Heinrich event 1 in the					
38	British Isles. Journal of Quaternary Science 13, 549-568.					
39	McCabe, A.M., Clark, P.U., Clark, J. 2005. AMS ¹⁴ C dating of deglacial events in the					
40	Irish Sea Basin and other sectors of the British-Irish ice sheet. Quaternary					
41	Science Reviews 24, 1673-1690.					
42	McCabe, A.M., Clark, P.U., Smith, D.E., Dunlop, P. 2007. A revised model for the					
43	last deglaciation of eastern Scotland. Journal of the Geological Society,					
44	London 164, 313-316.					
45	McCarroll, D. 2002. Amino-acid geochronology and the British Pleistocene: secure					
46	stratigraphical framework or a case of circular reasoning? Journal of					
47	Quaternary Science 17, 647-651.					
48	Mercer, J.H., 1978. West Antarctic ice sheet and CO ² greenhouse effect: a threat of					
49	disaster. Nature 271, 321–325.					

1	Merritt, J.W., Auton, C.A., Firth, C.R., 1995. Ice-proximal glaciomarine					
2	sedimentation and sea-level change in the Inverness area, Scotland - A review					
3	of the deglaciation of a major ice stream of the British Late Devensian Ice-					
4	Sheet. Quaternary Science Reviews 14, 289-329.					
5	Merritt, J.W., Auton, C.A., Connell, E.R., Hall, A.M., Peacock, J.D., 2003. Cainozoic					
6	geology and landscape evolution of north-east Scotland. British Geological					
7	Survey, Edinburgh, 178pp					
8	Mix, A.C., Bard, E., Schneider, R., 2001. Environmental Processes of the Ice Age					
9	land, ocean, glaciers (EPILOG). Quaternary Science Reviews 20, 627–657					
10	Mykura, W. 1976. Orkney and Shetland. British Regional Geology. Institute					
11	of Geological Sciences/HMSO, Edinburgh, 149pp.					
12	Murray, N.E., Bonsall, C., Sutherland, D.G., Lawson, T.J., Kitchener, A.C., 1993.					
13	Further radiocarbon determinations on reindeer remains of middle and late					
14	Devensian age from the Creag nan Uamh caves, Assynt, N.W. Scotland.					
15	Quaternary Newsletter 70, 1–10.					
16	Mykura, W. 1976, Orkney and Shetland, British Regional Geology, Edinburgh,					
17	HMSO					
18	Nesje A., Sejrup H. P., 1988. Late Weichselian/Devensian ice sheets in the North Sea					
19	and adjacent land areas. Boreas 17, 371-384.					
20	Nielsen, T., Rasmussen, T.L., Ceramicola, S., Kuijpers, A., 2007. Quaternary					
21	sedimentation, margin architecture and ocean circulation variability around the					
22	Faroe Islands, North Atlantic, Ouaternary Science Reviews, in press					
23	doi:10.1016/j.quascirev.2006.12.005.					
24	Nygard, A., Sejrup, H.P. Haflidason, H., Bryn, P., 2005. The glacial North Sea Fan,					
25	southern Norwegian Margin: Architecture and evolution from the upper					
26	continental slope to the deep-sea basin. Marine and Petroleum Geology 22, 71-					
27	84.					
28	Ó Cofaigh, C., 1996. Tunnel valley genesis. Progress in Physical Geography 20, 1-19.					
29	Ottesen, D., Dowdeswell, J.A., Rise, L., 2005. Submarine landforms and the					
30	reconstruction of fast-flowing ice streams within a large Quaternary ice sheet:					
31	The 2500-km-long Norweigian-Svalbard margin (57°-80°N). Geological					
32	Society of America Bulletin 117, 1033-1050.					
33	Paterson, W.S.B., 1994. The Physics of Glaciers. 3 rd edition. Oxford: Pergamon,					
34	480pp.					
35	Payne, A. J., Vieli, A., Shepherd, A., Wingham, D. J., Rignot, E., 2004. Recent					
36	dramatic thinning of largest West-Antarctic ice stream triggered by oceans.					
37	Geophysical Research Letters 31, L23401, 1–4.					
38	Peach, B.N., Horne, J., 1879. The glaciation of the Shetland Islands. Quarterly Journal					
39	of the Geological Society of London 35, 778-811.					
40	Peach, B.N., Horne, J., 1880. The glaciation of the Orkney Islands. Quarterly Journal					
41	of the Geological Society of London 36, 648-63.					
42	Peach, B.N., Horne, J., 1893. On the occurrence of shelly boulder clay in North					
43	Ronaldsay, Orkney. Transactions of the Edinburgh Geological Society 6, 309-					
44	13.					
45	Peacock, J.D., 1985. Comments on the Quaternary deposits and landforms of Scotland					
46	and the neighbouring shelves: a review. Quaternary Science Reviews 4, 1-2.					
47	Peacock, J.D., Merritt, J.W., 2000. Glacial deposits at the Boyne Bay Limestone					
48	Quarry, Portsoy, and their place in the late Pleistocene history of northeast					
49	Scotland. Journal of Quaternary Science 15, 543-555.					

1	Peacock, J.D., Austin, W. E. N., Selby, I., Graham, D. K., Harland, R., Wilkinson, I.					
2	P., 1992. Late Devensian and Flandrian palaeoenvironmental changes on the					
3	Scottish continental shelf west of the Outer Hebrides. Journal of Quaternary					
4	Science 7, 145-161.					
5	Peacock, J.D., Armstrong, M., Browne, M.A.E., Golledge, N.R. and Stoker, M.S.					
6	2007. The deglaciation of eastern Scotland: a response to McCabe et al.					
7	(2007). Journal of the Geological Society, London 164, 1261					
8	Peck V L Hall I R Zahn R Grousset F Hemming S R 2007 The relationship					
9	of Heinrich events and their European precursors over the past 60 ka BP: a					
10	multi-proxy ice-rafted debris provenance study in the North Fast Atlantic					
11	Ouaternary Science Reviews 26, 862–875.					
12	Peltier, W.R., Fairbanks, R.G., 2006, Global glacial ice volume and Last Glacial					
13	Maximum duration from an extended Barbados sea level record Quaternary					
14	Science Reviews 25 3322-3337					
15	Prage D 2003 Seismic imaging of mid-Pleistocene tunnel-valleys in the North Sea					
16	Basin-high resolution from low frequencies Journal of Annlied Geonhysics					
17	53 273-298					
18	Rack W Rott H 2004 Pattern of retreat and disintegration of Larsen B ice shelf					
19	Antarctic Peninsula Annals of Glaciology 39 505-510					
20	Rep D A 1976 Aspects of glaciation in Orkney Unpublished DhD thesis University					
21	of Liverpool					
22	Reeh N 1968 On the calving of ice from floating glaciers and ice shelves Journal					
23	of Glaciology 7 215–232					
24	Rise L. Olesen O. Rokoengen K. Ottesen D. Rijs F. 2004 Mid-Pleistocene ice					
25	drainage pattern in the Norwegian Channel imaged by 3D seismic. Quaternary					
26	Science Reviews 23, 2323-2335					
27	Robinson M Ballantyne C K 1979 Evidence for a glacial advance predating the					
28	Loch Lomond Advance in Wester Ross Scottish Journal of Geology 15 271-					
29	277					
30	Rokoengen K Løfaldli M Rise L Løken T Carlsen R 1982 Description and					
31	dating of a submerged beach in the northern North Sea Marine Geology 50 1-					
32	2					
33	Rose J 1985 The Dimlington Stadial/Dimlington Chronozone: a proposal for					
34	naming the main glacial episode of the Late Devension in Britain Boreas 14					
35	225-230					
36	Ross H 1996 The last glaciation of Shetland Unpublished PhD thesis University of					
37	St Andrews					
38	Scambos, T.A., Bohlander, J.A., Shuman, C. A., Skvarca, P., 2004, Glacier					
39	acceleration and thinning after ice shelf collapse in the Larsen B embayment.					
40	Antarctica, Geophysical Research Letters, 31, L18402 doi:10.1029/2004					
41	GL020670, 2004.					
42	Seirup, H.P., Aarseth, I., Ellingsen, K. L., Reither, E., Jansen, E., Løvlie, R., Bent,					
43	A. Brigham-Grette, J., Larsen, E., Stoker, M., 1987. Quaternary stratigraphy					
44	of the Fladen area, central North Sea: A multidisciplinary study. Journal of					
45	Ouaternary Science 2. 35-58.					
46	Seirup, H.P., Aarseth, I., Haflidason, H., 1991, The Ouaternary succession in the					
47	northern North Sea. Marine Geology 101. 103-111.					
48	Seirup, H.P., Haflidason, H., Aarseth I. King E. Forsberg C.F. Long D					
49	Rokoengen, K., 1994. Late Weichselian glaciation history of the northern					
50	North Sea. Boreas 23, 1–13.					

1	Sejrup, H.P., Landvik, J. Y., Larsen, E., Janocko, J., Eiriksson, J., King, E., 1998.						
2	The Jaeren area, a border zone of the Norwegian channel ice stream.						
3	Quaternary Science Reviews 17, 801-812.						
4	Sejrup, H.P., Larsen, E., Landvik, J., King, E.L., Haflidason, H., Nesje, A. 2000.						
5	Quaternary glaciations in southern Fennoscandia: evidence from south-						
6	western Norway and the northern North Sea region. Ouaternary Science						
7	Reviews, 19, 7, 667-685.						
8	Seirup, H.P., Larsen, E., Haflidason, H., Berstad, I.M., Hielstuen, B.O., Jonsdottir						
9	H.E., King, E.L., Landvik, J., Longva, O., Nygård, A., Ottesen, D., Raunholm,						
10	S., Rise, L., Stalsberg, K., 2003, Configuration, history and impact of the						
11	Norwegian Channel Ice Stream, Boreas 32, 18-36.						
12	Seirup, H. P., Hielstuen, B. O., Dahlgren, K. I. T., Haflidason, H., Kuijpers, A.,						
13	Nygard, A., Praeg, D., Stoker, M. S., Vorren, T. O., 2005, Pleistocene glacial						
14	history of the NW European continental margin Marine and Petroleum						
15	Geology 22, 1111–1129						
16	Selby I 1989 Quaternary Geology of the Hebridean Continental Margin						
17	Unpublished PhD thesis University of Nottingham						
18	Shackelton N I Backman I Zimmerman H Kent D V Hall M A Roberts						
19	DG Schnitker DG Baldauf IG Despraires A Homrighausen R						
20	Huddlestun P Kenne I B Kaltenback A I Krumslek K A O Morton						
21	A C Murray I W Westberg-Smith I 1984 Oxygen isotone calibration of						
21	The onset of ice-rafting and history of algoritation in the North Atlantic ragion						
22	Nature 307 620-623						
23	Shaw I Diner DIW Feder CDI King EI Todd DI Dall T Dettorson						
25	M I Liverman DG F 2006 A concentual model of the decleciation of						
26	Atlantic Canada Quaternary Science Reviews 25, 2059–2081						
20	Shennan I Bradley S Milne G Brooks A Bassett S Hamilton S 2006						
28	Relative sea-level changes glacial isostatic modelling and ice-sheet						
29	reconstructions from the British Isles since the Last Glacial Maximum Journal						
30	of Ousternary Science 21 585-599						
31	Shotton F.W. 1977 The English Midlands INOLIA Excursion Guide A2 Xth						
32	INOUA Congress Brimingham 51 pp						
33	Siegert M I Dowdeswell I A Svendsen I I Elverhøi A 2002 The Eurasian						
34	Arctic during the last Ice Age American Scientist 90, 32–39						
35	Sissons I.B. 1967 The Evolution of Scotland's Scenery, Olivier and Boyd						
36	Edinburgh 259 nn						
37	Sissons I.B. 1980. The glaciation of the Outer Hebrides (Letter). Scottish Journal of						
38	Geology 16, 81-4						
30	Skinner A C Gregory D M 1983 Quaternary stratigraphy in the northern North						
<i>1</i> 0	Sea Boreas 12 1/5-152						
40 //1	Smith M I Clark C D 2005 Methods for the visualization of digital elevation						
41	models for landform manning. Earth Surface Processes and Landforms 20						
42 12	885 000						
43	Sollid I I 1080 Comments on the genesis of De Geer morning. Norsk Geografisk						
44	Tidagkrift 42, 45, 47						
45 16	HUSSKIII 45, 45-47. Stalahang K. Laman E. Ottagan D. Sairry H.D. 2002, Middle to Lat						
40 17	Statsorig, K., Laisell, E., Ouesell, D., Sejiup, n.r., 2003a. Mildule lo Lale Wajahaalian Namuagian Channel Las Stream demosite and mambalasses and						
+/ /8	Weichschall Noi wegtall Challier fee Stiedill deposits and morphology off Igran, south-western Norway and the asstern North Soa area Daroas, 22, 140						
	166						
ーエノ							

1	Stoker,	M.S., 1990. Glacially-influenced sedimentation on the Hebridean slope, north-		
2	western United Kingdom continental margin. In: Dowdeswell, J.A. and			
3	Scourse, J.D. (Eds.), Glacimarine Environments: Processes and Sedi			
4		Geological Society, London, Special Publications 53, 349–362.		
5	Stoker,	M.S., 1995. The influence of glacigenic sedimentation on slope-apron		
6		development on the continental margin off Northwest Britain. In: R.A.		
7		Scrutton, Stoker, M.S., Shimmield, G.B., Tudhope, A.W. (Eds.), The		
8		Tectonics, Sedimentation and Paleoceanography of the North Atlantic Region.		
9		Geological Society, London, Special Publications, London, pp159–177.		
10	Stoker,	M.S., 2002. Late Neogene development of the UK Atlantic margin In: A.G.		
11		Doré, Cartwright, J.A., Stoker, M.S, Turner, J.P., White, N. (Eds.),		
12		Exhumation of the North Atlantic margin: Timing, mechanisms and		
13		implications for petroleum exploration. Geological Society, London, Special		
14		Publications London, pp313–329.		
15	Stoker,	M S., In press. Cenozoic sedimentary rocks. In: United Kingdom offshore		
16		regional report: the geology of the Rockall Basin. Hitchen, K. (ed.) British		
17		Geological Survey, HMSO, London.		
18	Stoker,	M.S., Bradwell, T., 2005. The Minch palaeo-ice stream, NW sector of the		
19		British-Irish Ice Sheet. Journal of the Geological Society, London162, 425-		
20		428.		
21	Stoker,	M.S., Holmes, R., 1991. Submarine end-moraines as indicators of Pleistocene		
22	, ,	ice-limits off northwest Britain. Journal of the Geological Society, London		
23		148, 431-434.		
24	Stoker,	M.S., Varming, T., In press. Cenozoic sedimentary rocks. In: United Kingdom		
25	,	offshore regional report: the geology of the Faroe-Shetland Basin. Ritchie J.		
26		(Ed.). British Geological Survey, HMSO, London.		
27	Stoker,	M.S., Long, D., Fyfe, J.A., 1985. A revised Quaternary stratigraphy for the		
28		central North Sea. Report of the British Geological Survey, 17/2. Edinburgh.		
29	Stoker,	M.S., Hitchen, K., Graham, C.C., 1993. United Kingdom offshore report: the		
30	,	geology of the Hebrides and West Shetland shelves, and adjacent deep-water		
31		areas. London: HMSO for the British Geological Survey.		
32	Stoker.	M.S., Leslie, A.B., Scott, W.D., Briden, J.C., Hine, N.M., Harland, R.,		
33	,	Wilkinson, I.P., Evans, D., Ardus, D.A. 1994. A record of late Cenozoic		
34		stratigraphy, sedimentation and climate change from the Hebrides Slope, NE		
35		Atlantic Ocean. Journal of the Geological Society. London 151, 235-249.		
36	Stoker.	M.S., Bradwell, T., Wilson, C., Harper, C., Smith, D., Brett, C., 2006, Pristine		
37		fiord landsystem revealed on the sea bed in the Summer Isles region, NW		
38		Scotland, Scottish Journal of Geology 42, 89–99.		
39	Stokes.	C. R., Clark, C. D., 2003. The Dubawnt Lake palaeo-ice stream: evidence for		
40		dynamic ice-sheet behaviour on the Canadian Shield and insights regarding		
41		the controls on ice-stream location and vigour. Boreas 32, 263-279.		
42	Stone	I.O. Ballantyne C.K. Fifield I.K. 1998 Exposure dating and validation of		
43	,	periglacial weathering limits, northwest Scotland, Geology 26, 87-590.		
44	Stone.	J.O., Ballantyne, C.K., 2006. Dimensions and deglacial chronology of the		
45		Outer Hebrides Ice Cap. northwest Scotland: implications of cosmic-ray		
46		exposure dating. Journal of Quaternary Science 21, 75-84.		
47	Stuiver	, M., Reimer, P.J., Reimer, R.W., 2005. CALIB 5.0.1 (Computer program and		
48		documentation). Available from: /http://radiocarbon.pa.gub.ac.uk/calib/		
49	Sutherl	and, D.G., 1984. The Quaternary deposits and landforms of Scotland and the		
50		neighbouring shelves: A review. Quaternary Science Reviews 3, 157-254.		

1	Thomas, R. H., 1977. Calving bay dynamics and ice-sheet retreat up the St. Lawrence					
2	valley system. Geographie Physique et Quaternaire 31, 347-356.					
3	Thomas, R., Rignot, E., Casassa, G., Kanagaratnam, P., Acuña, C., Akins, T.,					
4	Brecher, H., Frederick, E., Gogineni, P., Krabill, W., Manizade, S.,					
5	Ramamoorthy, H., Rivera, A., Russell R. Sonntag J. Swift R. Yungel J.					
6	Zwally J. 2004. Accelerated Sea-Level Rise from West Antarctica. Science					
7	306 255-258					
8	Thomson M E Eden R A 1977 Quaternary deposits of the central North Sea 3					
9	The Ousternary sequence in the west-central North Sea British Geological					
10	Survey					
11	van der Veen C I 1996 Tidewater calving Journal of Glaciology 42 375–385					
12	von Weymarn I Edwards K I 1973 Interstadial site on the island of Lewis					
12	Scotland Nature 246 473-474					
14	Walker MIC Biorck S Lowe II Curver I C Johnsen S Knudsen K-I					
15	Wohlfarth B INTIMATE group 1999 Isotopic 'events' in the GRIP ice					
15	coro: a stratatura for the Late Disistence Quaternary Science Paviews 18					
10	11/2 1150					
1 / 18	Whittington G Hall A M 2002 The Toleta Interstadial Scotland: a correlation					
10	with D O gualas GL 8 to GL 52 Quaternary Science Povious 21, 001,015					
19 20	Wilson J. J. Austin W.E.N. Janson E. 2002 The last British Lee Sheet: growth					
20	maximum avtant and deglaciation. Dolar Descarab 21, 242, 250					
21	Wilson C.V. Edwards W. Knay, L. Janas, D.C.P. Stavans, J.V. 1025. The					
22	Wilson, O. V., Edwards, W., Kilox, J., Jones, K.C.D., Stevens, J. V., 1955. The					
23	HMSO, Edinburgh, 205 nn					
24 25	Wingfield P 1080 Classical incisions indicating Middle and Upper Disistence inc					
25	limits off Dritein Terre Neve 1, 21, 52					
20	Wingfield D 1000 The origin of major indicions within the Disistence denosity of					
27	the Nerth See, Marine Coolery 01, 12, 21, 52					
28	Windle A.C. Cott. I.A. 1085. Thermology 91, 1-2, 51-52.					
29	wintle, A.G., Catt, J.A., 1985. Thermoluminescence dating of Dimlington Stadial					
30	deposits in eastern England. Boreas 14, 3, 231-234.					
31	Zwally, H. J., Abdalati, W., Herring, I., Larson, K., Saba, J., Steffen, K., 2002.					
32	Surface melt-induced acceleration of Greenland Ice Sheet flow. Science 297,					
33	218-222.					
34						
35						
36						
37						
38						
39						
40						
41						
42						
43						
44						
45						
46						
47						
48						
49						
50						

1 2 3 4 Figure captions 5

Figure 1. Map showing the general bathymetry and main glacio-geological seabed landforms around the northern UK. Data sources are given in the legend. Extent
of the study area (Figure 4) and key placenames are also shown.

Figure 2. Summary of Late Quaternary chronostratigraphic stages (UK) and their correlation with Marine Isotope Stages (modified from Bowen, 1999 and Walker et al., 1999). Dates are in calendar years BP. The timing of the Last Glacial Maximum (LGM) in NW Europe is also shown. Note: diagram is not to scale and correlations are not fully resolved.

15

9

16 Figure 3. BGS airgun profile and interpreted line drawing across the West 17 Shetland margin showing the geometry and stratigraphic architecture of the Rona 18 Wedge (see Figure 1 for location). Inset image shows the sea bed morphology of the 19 West Shetland slope (A-A' on the profile) derived from first returns from 3D 20 exploration surveys (cf. Long et al., 2004). The Glacial Unconformity (GU) is interpreted to represent the instigation of shelf-wide glaciation during the early Mid-21 22 Pleistocene (Stoker, 1995, 2002). Prominent ridges preserved on the outer shelf 23 represent submarine moraine banks, up to 50 m high and 6 km wide. The West 24 Shetland Slope surface morphology displays abundant glacigenic debris flows sourced 25 from an ice-sheet margin at the continental shelf edge (Davison and Stoker, 2002). 26 Abbreviations: SBM, sea bed multiple; WD, water depth. 27

Figure 4. Merged onshore-offshore (topographic-bathymetric) surface model for
the northern UK and surrounding continental shelf. Offshore data – Olex AS; Onshore
data – derived from NEXTMap Britain digital surface model (Intermap Technologies,
2003). See text for details of data collection and image production.

Figure 5. Sea-bed landforms on the northern UK continental shelf mapped from
the Olex dataset (Figure 4). Solid lines – positive linear features (ridges, primarily
moraines); dashed lines – negative linear features (channels, primarily tunnel valleys).
There is some generalisation, in places, for the sake of cartographic clarity. Colours
denote feature groups outlined in Key (1, 2, 3, A, B).

38

39 (A) Olex bathymetry of the northern North Sea showing the Figure 6. 40 morphology and distribution of large tunnel valleys (Fladen Deeps). For location see Figure 5. Most authors relate these features to subglacial hydrological phenomena 41 (e.g. Ó Cofaigh, 1996; Lonergan et al., 2006). (B) Rose diagram showing the 42 43 preferred orientation of the tunnel valleys in the northern North Sea. (C) Oblique view, looking SE from point X, along a well-developed sea-floor tunnel valley. The 44 45 feature is >100 m deep, 1 km wide and over 30 km long. Note the undulating long 46 profile and abrupt initiation/termination. 5x vertical exaggeration. Faint orthogonal 47 linear features are data artefacts.

1 Figure 7. (A) Olex bathymetry and (B) geomorphological map of the sea bed 2 NW of Orkney. For location see Figure 5. Black polygons - large ridges; black lines -3 narrow ridges. The large concentric ridges with irregular, in places overprinted, 4 morphology are interpreted as recessional moraines relating to a grounded, highly 5 dynamic, oscillatory lobe of the last BIS. Note the sharp-crested coherent morphology of the innermost arcuate loop - strongly reminiscent of a terrestrial thrust-block or 6 7 push moraine. (C) BGS seismic profile and interpreted line drawing of submarine 8 moraine banks along line X-X' (modified after Stoker and Holmes, 1991). The 9 moraine banks are up to 50 m high and 6 km wide; the crests of the banks are 10 currently at water depths of 100-150 m. The moraines are largely acoustically structureless. The observation that the most landward moraine imaged in the seismic 11 12 profile overlies layered strata which post-date the middle moraine reflects a 13 considerable readvance of the BIS during the general phase of overall recession.

14

15 (A) Olex bathymetry and (B) geomorphological map of the sea bed NE Figure 8. of Shetland. For location see Figure 5. Black polygons - large ridges; black lines -16 17 narrow ridges; trough margin shown as triangle-ornamented line. The high density of 18 arcuate, convoluted, occasionally overprinting ridges NE of Unst are interpreted as 19 recessional moraines of a grounded, highly dynamic, oscillatory lobe of the last BIS. The broadly concentric configuration of moraines around Shetland supports the notion 20 21 of an independent ice cap on the islands during the latter stages of the last glaciation. 22 (C) Close-up image of subparallel more-linear ridges within the trough east of 23 Shetland. Based on their geomorphological expression, these are interpreted as De 24 Geer moraines - strongly suggestive of a tidewater glacier margin. (D) Olex 25 bathymetry and geomorphological map of closely spaced low-elevation ridges in the 26 Fair Isle channel, also interpreted as De Geer moraines.

27

28 Figure 9. Olex bathymetry of the northern North Sea showing coloured 29 bathymetric slices at various elevations: (i) 160-190 m below present day; (ii) 120-150 m below present day; and (iii) 90-120 m below present day sea level. Darker 30 31 tones are deeper water. The pattern of sea-level rise associated with ice-sheet 32 deglaciation would have followed this sequence, resulting in a large north-south 33 marine embayment in the northern North Sea Basin. Note: No corrections for glacio-34 isostatic loading or forebulge development have been incorporated into these sea-level 35 scenarios.

36

37 Figure 10. Reconstruction of the confluent British (BIS) and Fennoscandian ice 38 sheets (FIS) at LGM (30-25 ka BP), with hypothesised flow lines. Solid lines inferred 39 from this study; dashed flow lines (FIS) taken from Sejrup et al. (1994) and Ottesen et 40 al. (2005). Dark shading shows approximate zone of confluence (CZ); small arrows 41 show MSGL orientations recorded (from west to east) by Bradwell et al. (2007), 42 Stalsberg et al. (2003) and Graham et al. (2007). Hatching denotes trough-mouth fans. 43 FB denotes possible ice sheet frozen-bed patches in Buchan and on Lewis. Sea-bed 44 contours refer to present-day bathymetry (see Figure 1). Faeroe Ice cap not shown, 45 extent uncertain (see Nielsen et al., 2007).

46

47 Figure 11. Reconstruction of British and Fennoscandian ice sheets during LGM
48 deglaciation. Three sequential stages are shown: 1 (black line) – calving bay
49 initiation; lobes dominate western margin. 2 (grey line) – calving bay well developed;
50 dynamic ice-sheet separation and re-organisation ongoing. 3 (shaded fill) – separate

- BIS and FIS; ice free central North Sea Basin; independent Shetland ice cap.
- Hypothesised flow lines shown for final stage only; those for FIS taken from Sejrup et al. (1994) and Ottesen et al. (2005). Sea-bed contours refer to present-day bathymetry
- (see Figure 1). 5 6

Key to abbreviations:

Trough Mouth Fans

- BD Barra-Donegal Fan
- SS Sula Sgeir Fan
- R Rona Wedge
- F Foula Wedge
- S Suduroy Fan
- Sa Sandoy Fan
- Sk Skeivi Fan
- NS North Sea Fan

Moraines

- BB Bosies Bank
- WB Wee Bankie
- OB Otter Bank
- TR Tampen Ridge
- WRR Wester Ross Moraine

Bathymetric Deeps

- FD Fladen Deeps
- DHD Devil's Hole Deeps
- ST Southern Trench

Islands

- StK St Kilda
- FL Flannan Islands
- H Harris
- NR North Rona
- FI Fair Isle
- Fa Foula

Box showing extent and orientation of mega-scale glacial lineations, mapped by Graham et al. (2007)

Data sources

Moraines Robinson and Ballantyne (1979) Cameron et al. (1987) Hall and Bent (1990) Selby (1989) Stoker (1990) Stoker and Holmes (1991) Davison (2005)

Trough-Mouth Fans Sejrup et al. (2005) Nygard et al. (2005) Stoker and Varming (in press) Stoker (in press)

Period	Marine Isotope Stage	Stage		Age (ka)
	1	HOLOCENE		- 11 5 -
	2		LATE	11.5
		LGM		- 31 -
RNARY	3	B DEVENSIAN =	MID	50
QUATEI	4	Weichselian	EARLY	- 58 -
		<u></u>		116 -
	5	IPSWICHIAN = Eemi	an	110

