19,264 research outputs found
Inferring processes underlying B-cell repertoire diversity
We quantify the VDJ recombination and somatic hypermutation processes in
human B-cells using probabilistic inference methods on high-throughput DNA
sequence repertoires of human B-cell receptor heavy chains. Our analysis
captures the statistical properties of the naive repertoire, first after its
initial generation via VDJ recombination and then after selection for
functionality. We also infer statistical properties of the somatic
hypermutation machinery (exclusive of subsequent effects of selection). Our
main results are the following: the B-cell repertoire is substantially more
diverse than T-cell repertoires, due to longer junctional insertions; sequences
that pass initial selection are distinguished by having a higher probability of
being generated in a VDJ recombination event; somatic hypermutations have a
non-uniform distribution along the V gene that is well explained by an
independent site model for the sequence context around the hypermutation site.Comment: acknowledgement adde
Association between malaria exposure and Kaposi's sarcoma-associated herpes virus seropositivity in Uganda.
OBJECTIVE: Unlike other herpes viruses, Kaposi's sarcoma-associated herpes virus (KSHV) is not ubiquitous worldwide and is most prevalent in sub-Saharan Africa. The reasons for this are unclear. As part of a wider investigation of factors that facilitate transmission in Uganda, a high prevalence country, we examined the association between antimalaria antibodies and seropositivity against KSHV. METHODS: Antibodies against P. falciparum merozoite surface protein (PfMSP)-1, P. falciparum apical membrane antigen (PfAMA)-1 and KSHV antigens (ORF73 and K8.1) were measured in samples from 1164 mothers and 1227 children. RESULTS: Kaposi's sarcoma-associated herpes virus seroprevalence was 69% among mothers and 15% children. Among mothers, KSHV seroprevalence increased with malaria antibody titres: from 60% to 82% and from 54% to 77%, comparing those with the lowest and highest titres for PfMSP-1 and PfAMA-1, respectively (P < 0.0001). Among children, only antibodies to PfAMA-1 were significantly associated with KSHV seropositivity, (P < 0.0001). In both mothers and children, anti-ORF73 antibodies were more strongly associated with malaria antibodies than anti-K8.1 antibodies. CONCLUSION: The association between malaria exposure and KSHV seropositivity suggests that malaria is a cofactor for KSHV infection or reactivation
An antigen-driven B-cell response within the salivary glands of patients with Sjögren’s syndrome
Infection with a bacterium or virus induces the production of antibodies, specialised protein molecules that bind to and eliminate the microorganism. These antibodies are produced by B-cells that are stimulated by antigen (any foreign protein or carbohydrate) in the lymph nodes and spleen. During this process, they diversify their variable region genes (V-genes), encoding the antigen-binding region of the antibody, by switching on machinery that mutates the V-genes at a very high rate (somatic hypermutation). In autoimmune diseases, B-cells produce autoantibodies against self-antigens present on the patient's own tissues. Clusters of B- and T-cells are frequently found in the target organs of autoimmune disease. The aim of the work described here was to determine whether these clusters of cells are responding to stimulation by antigen. For this purpose we investigated the B-cell response in patients with an autoimmune disease affecting the salivary and lachrymal glands. By cloning and sequencing the expressed V-genes from indvidual clusters of cells in the salivary glands, we were able to show that the B-cells in these clusters are undergoing clonal proliferation, somatic hypermutation and antigen selection. The presence of similar structures in the target tissues of other autoimmune diseases suggests that this is a widespread phenomenon
A quantitative approach for measuring the reservoir of latent HIV-1 proviruses.
A stable latent reservoir for HIV-1 in resting CD4+ T cells is the principal barrier to a cure1-3. Curative strategies that target the reservoir are being tested4,5 and require accurate, scalable reservoir assays. The reservoir was defined with quantitative viral outgrowth assays for cells that release infectious virus after one round of T cell activation1. However, these quantitative outgrowth assays and newer assays for cells that produce viral RNA after activation6 may underestimate the reservoir size because one round of activation does not induce all proviruses7. Many studies rely on simple assays based on polymerase chain reaction to detect proviral DNA regardless of transcriptional status, but the clinical relevance of these assays is unclear, as the vast majority of proviruses are defective7-9. Here we describe a more accurate method of measuring the HIV-1 reservoir that separately quantifies intact and defective proviruses. We show that the dynamics of cells that carry intact and defective proviruses are different in vitro and in vivo. These findings have implications for targeting the intact proviruses that are a barrier to curing HIV infection
Recycling probability and dynamical properties of germinal center reactions
We introduce a new model for the dynamics of centroblasts and centrocytes in
a germinal center. The model reduces the germinal center reaction to the
elements considered as essential and embeds proliferation of centroblasts,
point mutations of the corresponding antibody types represented in a shape
space, differentiation to centrocytes, selection with respect to initial
antigens, differentiation of positively selected centrocytes to plasma or
memory cells and recycling of centrocytes to centroblasts. We use exclusively
parameters with a direct biological interpretation such that, once determined
by experimental data, the model gains predictive power. Based on the experiment
of Han et al. (1995b) we predict that a high rate of recycling of centrocytes
to centroblasts is necessary for the germinal center reaction to work reliably.
Furthermore, we find a delayed start of the production of plasma and memory
cells with respect to the start of point mutations, which turns out to be
necessary for the optimization process during the germinal center reaction. The
dependence of the germinal center reaction on the recycling probability is
analyzed.Comment: 30 pages, 8 figure
Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach
Integrated steel manufacturers (ISMs) have no specific product, they just produce finished product from the ore. This enhances the uncertainty prevailing in the ISM regarding the nature of the finished product and significant demand by customers. At present low cost mini-mills are giving firm competition to ISMs in terms of cost, and this has compelled the ISM industry to target customers who want exotic products and faster reliable deliveries. To meet this objective, ISMs are exploring the option of satisfying part of their demand by converting strategically placed products, this helps in increasing the variability of product produced by the ISM in a short lead time. In this paper the authors have proposed a new hybrid evolutionary algorithm named endosymbiotic-psychoclonal (ESPC) to decide what and how much to stock as a semi-product in inventory. In the proposed theory, the ability of previously proposed psychoclonal algorithms to exploit the search space has been increased by making antibodies and antigen more co-operative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results compared with other evolutionary algorithms such as genetic algorithms (GA) and simulated annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained and convergence time required to reach the optimal/near optimal value of the solution
- …
