83,955 research outputs found

    Achievable and Crystallized Rate Regions of the Interference Channel with Interference as Noise

    Full text link
    The interference channel achievable rate region is presented when the interference is treated as noise. The formulation starts with the 2-user channel, and then extends the results to the n-user case. The rate region is found to be the convex hull of the union of n power control rate regions, where each power control rate region is upperbounded by a (n-1)-dimensional hyper-surface characterized by having one of the transmitters transmitting at full power. The convex hull operation lends itself to a time-sharing operation depending on the convexity behavior of those hyper-surfaces. In order to know when to use time-sharing rather than power control, the paper studies the hyper-surfaces convexity behavior in details for the 2-user channel with specific results pertaining to the symmetric channel. It is observed that most of the achievable rate region can be covered by using simple On/Off binary power control in conjunction with time-sharing. The binary power control creates several corner points in the n-dimensional space. The crystallized rate region, named after its resulting crystal shape, is hence presented as the time-sharing convex hull imposed onto those corner points; thereby offering a viable new perspective of looking at the achievable rate region of the interference channel.Comment: 28 pages, 12 figures, to appear in IEEE Transactions of Wireless Communicatio

    Review and Comparison of Methods to Model Ship Hull Roughness

    Get PDF
    There is a large body of research available focusing on how ship hull conditions, including various hull coatings, coating defects, and biofouling, influence the boundary layer, and hence resistance and wake field of a ship. Despite this there seems to be little consensus or established best practice within the ship design community on how to model hull roughness for ship-scale CFD. This study reviews and compares proposed methods to model hull roughness, to support its use in the ship design community. The impact of various types of roughness on additional resistance and wake fields are computed and presented for the well-established test case KVLCC2. The surfaces included in the review are divided into three groups: 1) high quality, newly painted surfaces, 2) surfaces with different extent of poor paint application and/or hull coating damages; and 3) surfaces covered with light slime layers. The review shows the use of a variety of roughness functions, both Colebrook-type and inflectional with three distinct flow regimes, as well as a variety of strategies to obtain the roughness length scales. We do not observe any convergence within the research community towards specific roughness functions or methods to obtain the roughness length scales. The comparison using KVLCC2 clearly illustrates that disparities in surface texture cause large differences in additional resistance, and consequently no strong correlation to a single parameter, e.g. AHR (Average Hull Roughness). This implies that, to be able to select a suitable hull roughness model for a CFD-setup, more details of the surface characteristics are required, such as hydrodynamic characterization of hull coating and expected fouling

    A Fractal Geometry for Hydrodynamics

    Get PDF
    Experiments have shown that objects with uneven surfaces, such as golf balls, can have less drag than those with smooth surfaces. Since fractal surfaces appear naturally in other areas, it must be asked if they can produce less drag than a traditional surface and save energy. Little or no research has been conducted so far on this question. The purpose of this project is to see if fractal geometry can improve boat hull design by producing a hull with low friction

    A Fractal Geometry for Hydrodynamics

    Get PDF
    Experiments have shown that objects with uneven surfaces, such as golf balls, can have less drag than those with smooth surfaces. Since fractal surfaces appear naturally in other areas, it must be asked if they can produce less drag than a traditional surface and save energy. Little or no research as been conducted so far on this question. The purpose of this project is to see if fractal geometry can improve boat hull design by producing a hull with low friction

    High speed fluttering skids with elastic suspensions

    Get PDF
    In a recent project, named SEALAB, a novel marine vehicle has been developed. Its main characteristic is the presence of special skid surfaces surfing over rough water. A suspension system controls the vertical motion of the skid, softening the sequential impacts and vibrations induced by the water, similarly to a wheeled vehicle in off-road trials. The hull-skid-suspension set is modeled by prototypical equations. The system undergoes special regimes when the vessel speed at sea is varied. In particular, for some combinations of the forward speed and sea-state, the skid still maintains the contact with the water. In other navigation conditions the skid indeed jumps out the water with a complete different average transmitted force and vibration characteristics of the hull. This paper presents a theory that outlines these phenomena identifying conditions that lead to the jumping skid condition
    • …
    corecore