44,138 research outputs found

    Immunoreactive human chorionic gonadotropin and its free ß-subunit in serum and ascites of patients with malignant tumors

    Get PDF
    Human chorionic gonadotropin (hCG) is a clinically relevant marker of trophoblastic and nontrophoblastic malignancies. In the present studies, in addition to determining serum hCG, we investigated the presence and properties of hCG immunoreactivity in ascites of patients with nontrophoblastic malignant tumors and, for comparison, in ascites caused by cirrhotic liver disease. Total hCG immunoreactivity [hCG (+hCG-ß)] was found to be elevated above the reference value (>5 IU/liter) in the serum of 2 of 20 patients with cirrhosis and 11 of 20 patients with malignant tumors. For comparison, in ascites, hCG (+hCG-ß) concentrations were frequently higher than in the corresponding serum samples and exceeded 10 IU/liter in 0 of 20 cirrhotic samples and in 16 of 20 malignant samples. In order to elucidate the nature of the hCG immunoreactive material, all samples were then assessed by immunoradiometric assays specific for the intact hCG molecule (holo-hCG) and the free hCG-ß subunit, respectively. In the holo-hCG assay, elevated values were detected in 0 of 20 (0 of 20) cirrhotic ascites (serum) samples and 0 of 20 (1 of 20) malignant ascites (serum) samples. In the free hCG-ß assay, on the other hand, no positive results were obtained in the ascites or serum of 20 patients with liver cirrhosis; however, 8 of 20 serum samples and 16 of 20 ascites samples derived from tumor patients were positive. In accord with the immunological data, gel chromatographical studies of malignant ascites revealed the abundance of free hCG-ß subunit rather than that of holo-hCG. In contrast to malignancy-related ascites, in ascites of patients receiving hCG injections for treatment of infertility, holo-hCG was more abundant than free hCG-ß immunoreactivity. Incubation experiments of purified holo-hCG in ascites for 24 h at -20, 20, or 37°C showed no substantial dissociation of the hCG molecule and release of free hCG-ß immunoreactivity, thus arguing against production of free hCG-ß by degradation of holo-hCG and in favor of its tumor-related secretion. In conclusion, hCG-ß immunoreactivity is frequently elevated in malignancy-related ascites and appears to be related to the presence of free ß subunit of hCG rather than that of the intact hCG molecule. Interestingly, hCG-ß determination in ascites proved to be clearly superior to serum measurement in discriminating between tumor and cirrhosis. Thus, hCG-ß might be a useful marker of malignancy-related ascites and should be prospectively assessed for possible clinical use in comparison with other well-established parameters, such as cytology and protein determination. For this purpose, according to our results, only assays that exhibit a high sensitivity for free hCG-ß subunit appear to be suitable

    Variants of human chorionic gonadotropin from pregnant women and tumor patients recognized by monoclonal antibodies

    Get PDF
    In biological fluids, hCG and its free alpha- (hCG alpha) and beta-subunits (hCG beta), occur in multiple forms. These various forms differ at the molecular level primarily in glycosylation, but also differ in protein backbone modifications corresponding to the urinary low molecular weight fragment of the hCG beta-subunit (beta-core fragment). This microheterogeneous nature can be demonstrated by isoelectric focusing in which variants are separated into bands with different isoelectric points (pI). To determine whether such isoelectric variants differ in antigenicity and consequently might escape immunoassay detection due to overspecificity of monoclonal antibodies (MCA), urinary pregnancy hCG (NIH, CR123) and tumor hCG preparations, such as a tumor-specific acidic variant of hCG (hCGav) and the hCG beta-core fragment, were separated by isoelectric focusing in the absence or presence of 8 M urea, or by sodium docedyl sulfate-polyacrylamide gel electrophoresis and enzymatically immunostained using an MCA panel directed against 17 different hCG epitopes. MCA against 14 different epitopes accessible on holo-hCG recognized all pI variants of pregnancy holo-hCG or tumor-derived hCGav, as was true for the three MCA recognizing epitopes hidden on holo-hCG but accessible on the free subunits after hCG dissociation by urea. We conclude that each individual pI-isoform of holo-hCG and its free subunits expresses the entire set of epitopes recognized by our MCA panel. The carbohydrate moieties that form a biochemical basis for hCG heterogeneity seem to be neither of major antigenic relevance, nor are they structurally related to any particular epitope. Thus, various glycosylation forms of hCG, hCG alpha, hCG beta, and hCG beta-core in normal as well as in pathological samples should safely be detectable and measureable by immunoassays employing MCA with appropriate subunit specificity

    Stimulation of hCG protein and mRNA in first trimester villous cytotrophoblast cells in vitro by glycodelin A

    Get PDF
    Aim: Human chorionic gonadotropin (hCG) is produced by fetal trophoblast cells and secreted into maternal circulation mainly in the first trimester of pregnancy. Another glycoprotein, glycodelin A, is one of the main products of the maternal decidua during this period. The purpose of this study was to investigate the effect of glycodelin A on hCG release by isolated cytotrophoblast cells in vitro. Methods: Cytotrophoblast cells were prepared from human first trimester placenta and incubated with varying concentrations of glycodelin A. Supernatants were assayed for hCG protein concentrations, and quantification of beta hCG mRNA was carried out by RT-PCR. Expression of hCG was analysed in stimulated trophoblast cells and in unstimulated controls by immunocytochemistry. Results: Glycodelin A induces a dose-dependent increase of hCG production. An increase of hCG expression was measured at 100 and 200 mu g/mL glycodelin-A treatment in trophoblast cell culture by TaqMan assay on mRNA level. We found a moderate staining of hCG in control trophoblast cells, whereas a strong hCG staining was seen in glycodelin A-treated trophoblast cells. Conclusions: HCG is a marker for the differentiation process of trophoblast cells. Our results suggest that glycodelin A secreted by the decidualized endometrium is involved in the regulation of hormones produced by the trophoblast

    Interaction of Human Chorionic Gonadotropin (hCG) and Asialo-hCG with Recombinant Human Thyrotropin Receptor.

    Get PDF
    hCG is a putative thyroid stimulator. The present studies were undertaken to examine its interaction and that of its desialylated variant asialo-hCG with recombinant human TSH (hTSH) receptor (hTSHr). To this end, we transfected a human thyroid carcinoma cell line (HTC) lacking endogenous TSHr with the full-length cDNA of the hTSHr. Unlike the wild type, the transfected cells, termed HTC-TSHr cells, were able to bind bovine TSH (bTSH) with high affinity and increase cAMP production in response to bTSH stimulation. Of the hCG forms, intact hCG displayed a weak activity to inhibit [125I] bTSH binding to HTC-TSHr cells, with 100 mg/L (2.6 x 10(-6) mol/L) producing maximally a 20% inhibition, whereas asialo-hCG achieved half-maximum binding inhibition at a concentration of 8 mg/L (2.3 x 10(-7) mol/L). The inhibitory constant (Ki) of asialo-hCG for recombinant hTSHr was calculated from saturation experiments in the presence of variable doses of bTSH and a fixed concentration of asialo-hCG to be approximately 8 x 10(-8) mol/L. The interaction of asialo-hCG with TSHr was further assessed by studies of the direct binding of the radioactively labeled hormone to both HTC and HTC-TSHr cells. [125I]Asialo-hCG binding to HTC-TSHr cells was 4.7%, compared to 1.5% in the wild-type cells lacking TSHr and was displaceable by bTSH (0.1-100 IU/L), indicating specific binding of the tracer to TSHr. Functionally, hCG (up to 100 mg/L; 2.6 x 10(-6) mol/L) proved unable to evoke any significant cAMP response over basal values in HTC-TSHr cells, as did asialo-hCG. Asialo-hCG, but not hCG, inhibited bTSH-stimulated adenylate cyclase activity in the cells in a dose-dependent manner. In conclusion, the present data show that intact hCG binds only weakly to HTC-TSHr cells and produces no significant cAMP stimulation, which is at variance with data obtained in FRTL-5 and Chinese hamster ovary-TSHr cells, but in good accord with previous findings in human thyroid membranes. Asialo-hCG, on the other hand, strongly binds to recombinant TSHr and inhibits the cAMP response to bTSH in HTC-TSHr cells, indicating that the desialylated hCG variant directly interacts with the receptor and truly is an antagonist of the hTSHr

    Intra-group Light in Hickson Compact Groups

    Full text link
    We have analyzed the intra-group light component of 3 Hickson Compact Groups (HCG 79, HCG 88 and HCG 95) with detections in two of them: HCG 79, with 46±1146\pm11% of the total BB band luminosity and HCG 95 with 11±2611\pm26%. HCG 88 had no component detected. This component is presumably due to tidally stripped stellar material trapped in the group potential and represents an efficient tool to determine the stage of dynamical evolution and to map its gravitational potential. To detect this low surface brightness structure we have applied the wavelet technique OV\_WAV, which separates the different components of the image according to their spatial characteristic sizes.Comment: Small update on the associated institutions lis

    Concerted action of human chorionic gonadotropin and norepinephrine on intracellular-free calcium in human granulosa-lutein cells

    Get PDF
    Luteal cells are known to possess receptors for LH/hCG and receptors of the beta-adrenergic type. Interactions of specific agonists with either receptor lead to the activation of adenylate cyclase and subsequently to an increase of cAMP. Since in the human there is also evidence for the presence of alpha-adrenergic receptors, we have investigated whether activation of these receptors is linked to calcium as a second messenger and performed measurement of intracellular free calcium (Ca2+) with Fura-2 in single human granulosa-lutein cells. Addition of either hCG (100, 1,000, 25,000 IU/L) or norepinephrine (NE; known to interact with both alpha- and beta-adrenergic receptors), beta- adrenergic receptor agonist isoproterenol (ISO), or alpha-adrenergic receptor agonist phenylephrine (PHE; all at 10 and 100 mumol/L) did not increase free intracellular Ca2+. However, the addition of combinations of NE/hCG, PHE/hCG, but not the combination ISO/hCG, induced a transient increase in cytosolic free Ca2+. The NE/hCG-evoked calcium signal was not abolished in the presence of the beta-adrenergic receptor antagonist propranolol and was not affected by removal of extracellular Ca2+. Furthermore, we tested whether catecholamines affected the release of progesterone in the presence or absence of hCG. As expected, hCG (10,000 IU/L) stimulated progesterone release by cultured granulosa-lutein cells. When these cells were incubated with NE, PHE, or ISO (at 10 mumol/L), production of progesterone by these cells was not affected. However, the combinations of NE and PHE with hCG abolished the hCG-induced progesterone accumulation, but ISO coincubated with hCG did not. Taken together, our results indicate: 1) the presence of functional alpha-adrenergic receptors on human granulosa-lutein cells; 2) simultaneous activation of two different receptors (for hCG and alpha-agonists) are able to evoke intracellular Ca2+ elevation, implicating postreceptor interactions in human granulosa lutein cells; 3) this process occurs even in the absence of extracellular Ca2+, indicating the involvement of intracellular Ca2+ stores, most likely due to activation of phosphoinositide pathway; 4) catecholamines most likely acting via alpha-adrenergic receptors, inhibit the LH/hCG-induced release of progesterone

    Variation in the Thyrotropic Activity of Human Chorionic Gonadotropin in Chinese Hamster Ovary Cells Arises from Differential Expression of the Human Thyrotropin Receptor and Microheterogeneity of the Hormone.

    Get PDF
    The role of hCG as a stimulator of the human thyroid has been a subject of controversy, because discrepant results have been obtained in different in vitro assays. In an attempt to explain the variation observed in the thyroid response to hCG, we investigated the ability of hCG and that of its isoforms and glycosylation variants to inhibit [125I]bovine (b) TSH binding and stimulate adenylate cyclase in two clones, JP09 and JP26, of Chinese hamster ovary cells stably transfected with the human TSH receptor (hTSHr). The two clones differed with respect to the number of hTSHr expressed per cell (34,000 in JP09 and 2,000 in JP26 cells). Both responded extremely well to bTSH; the cAMP response to 0.001 IU/L bTSH was distinguishable from basal values. Interestingly, JP09 cells were readily stimulated by hCG (20-100 mg/L; 0.52-2.6 x 10(-6) mol/L) to release cAMP, whereas JP26 cells showed little if any response. Also, cAMP stimulation produced by asialo-hCG was 12-fold in JP09 cells and only 4-fold in JP26 cells compared to 45- and 67-fold stimulations by bTSH, respectively. Stimulation by asialo-hCG was approximately 30% that of bTSH in JP09 cells, but less than 6% in JP26 cells. When assessing the thyrotropic activity of the microheterogeneous isoforms of hCG, more alkaline pI forms were found to be more active than those of a more acidic pI regardless of whether they were derived from normal or molar pregnancy urine. Further studies with hCG, asialo-hCG, asialoagalacto-hCG, and deglycosylated hCG revealed that removal of sialic acid caused a marked increase in both its affinity for hTSHr and its cAMP-releasing potency, whereas removal of further carbohydrate, although it slightly enhanced receptor binding, was detrimental to adenylate cyclase activation. In conclusion, differences in hTSHr expression may cause a variation in the cAMP response to hCG or its glycosylation variants, as does the microheterogeneity of the hormone itself. These mechanisms may be responsible at least in part for the divergent responses of different cell types to hCG and render interpretation of the physiological meaning of the data obtained in recombinant receptor systems difficult

    Intra-group diffuse light in compact groups of galaxies. HCG 79, HCG 88 and HCG 95

    Full text link
    Deep BB and RR images of three Hickson Compact Groups, HCG 79, HCG 88 and HCG 95, were analyzed using a new wavelet technic to measure possible intra-group diffuse light present in these systems. The method used, OV\_WAV, is a wavelet technic particularly suitable to detect low-surface brightness extended structures, down to a S/N=0.1S/N = 0.1 per pixel, which corresponds to a 5-σ\sigma-detection level in wavelet space. The three groups studied are in different evolutionary stages, as can be judged by their very different fractions of the total light contained in their intra-group halos: 46±1146\pm11% for HCG 79 and 11±2611\pm26% for HCG 95, in the BB band, and HCG 88 had no component detected down to a limiting surface brightness of 29.1Bmagarcsec−229.1 B mag arcsec^{-2}. For HCG 95 the intra-group light is red, similar to the mean colors of the group galaxies themselves, suggesting that it is formed by an old population with no significant on-going star formation. For HCG 79, however, the intra-group material has significantly bluer color than the mean color of the group galaxies, suggesting that the diffuse light may, at least in part, come from stripping of dwarf galaxies which dissolved into the group potential well.Comment: Two suggested references added to the introductio

    Androgen-responsive non-coding small RNAs extend the potential of HCG stimulation to act as a bioassay of androgen sufficiency

    Get PDF
    Background: It is unclear whether a short-term change in circulating androgens is associated with changes in the transcriptome of the peripheral blood mononuclear cells (PBMC). Aims & Methods: To explore the effect of hCG-stimulation on the PBMC-transcriptome, 12 boys with a median age (range) of 0.7yrs (0.3, 11.2) who received intramuscular hCG 1500u on 3 consecutive days as part of their investigations underwent transcriptomic array analysis on RNA extracted from peripheral blood mononuclear cells before and after hCG stimulation. Results: Median pre and post hCG testosterone for the overall group was 0.7nmol/l (<0.5,6) and 7.9nmol/l (<0.5, 31.5), respectively. Of the 12 boys, 3 (25%) did not respond to hCG stimulation with a pre and post median serum testosterone of <0.5nmol/l and <0.5nmol/l, respectively. When corrected for gene expression changes in the non-responders to exclude hCG effects, all 9 of the hCG responders consistently demonstrated a 20% or greater increase in the expression of piR-37153 and piR-39248, non-coding PIWI-interacting RNAs (piRNAs). In addition, of the 9 responders, 8, 6 and 4 demonstrated a 30%, 40% and 50% rise, respectively in a total of 2 further piRNAs. In addition, 3 of the responders showed a 50% or greater rise in the expression of another small RNA, SNORD5. On comparing fold change in serum testosterone with fold change in the above transcripts, a positive correlation was detected for SNORD5 (p=0.01). Conclusions: The identification of a dynamic and androgen-responsive PBMC-transcriptome extends the potential value of the hCG test for assessment of androgen sufficiency

    Two formation channels of UCDs in Hickson Compact Groups

    Full text link
    The formation of ultra-compact dwarf galaxies (UCDs) is believed to be interaction driven, and UCDs are abundant in the cores of galaxy clusters, environments that mark the end-point of galaxy evolution. Nothing is known about the properties of UCDs in compact groups of galaxies, environments where most of galaxy evolution and interaction is believed to occur and where UCDs in intermediate state of evolution may be expected. The main goal of this study is to detect and characterize, for the first time, the UCD population of compact groups. For that, 2 groups in different evolutionary stages, HCG 22 and HCG 90, were targeted with VLT/FORS2/MXU. We detect 16 and 5 objects belonging to HCG 22 and HCG 90, respectively, covering the magnitude range -10.0 > M_R > -11.5 mag. Their colours are consistent with old ages covering a broad range in metallicities. Photometric mass estimates put 4 objects in HCG 90 and 9 in HCG 22 in the mass range of UCDs (>2x10^6 M_Sun) for an assumed age of 12 Gyr. These UCDs are on average 2-3 times larger than typical Galactic GCs, covering a range of 2 >~ r_h >~ 21 pc. The UCDs in HCG 22 are more concentrated around the central galaxy than in HCG 90, at the 99% confidence level. They cover a broad range in [alpha/Fe] abundances from sub- to super-solar. The spectra of 3 UCDs show tentative evidence for intermediate age stellar populations. We calculate the specific frequency (S_N) of UCDs for both groups, finding that HCG 22 has about three times higher S_N than HCG 90. The ensemble properties of the detected UCDs supports 2 co-existing formation channels: a star cluster origin and an origin as tidally stripped dwarf nuclei. Our results imply that the UCDs detected in both groups do not, in their majority, originate from relatively recent galaxy interactions. Most of the detected UCDs have likely been brought into the group with their host galaxies.[abridged]Comment: Accepted for publication at A&A, 17 pages, 9 figures + 2 additional figure
    • …
    corecore