3,284 research outputs found

    Supramolecular hierarchy among halogen and hydrogen bond donors in light-induced surface patterning

    Get PDF
    Halogen bonding, a noncovalent interaction possessing several unique features compared to the more familiar hydrogen bonding, is emerging as a powerful tool in functional materials design. Herein, we unambiguously show that one of these characteristic features, namely high directionality, renders halogen bonding the interaction of choice when developing azobenzene-containing supramolecular polymers for light-induced surface patterning. The study is conducted by using an extensive library of azobenzene molecules that differ only in terms of the bond-donor unit. We introduce a new tetrafluorophenol-containing azobenzene photoswitch capable of forming strong hydrogen bonds, and show that an iodoethynyl-containing azobenzene comes out on top of the supramolecular hierarchy to provide unprecedented photoinduced surface patterning efficiency. Specifically, the iodoethynyl motif seems highly promising in future development of polymeric optical and photoactive materials driven by halogen bonding

    Synthesis and cationic polymerization of halogen bonding vinyl ether monomers

    Get PDF
    Halogen bonding is rapidly becoming recognized as a viable and useful intermolecular interaction in supramolecular chemistry. While various monomers amenable to radical polymerization methods containing halogen bonding donors have been developed, this study aims to expand the type of monomers that incorporate this intermolecular interaction to facilitate use of cationic polymerization by developing three novel vinyl ether monomers containing halogen bonding donor moieties: 2, 3, 5, 6-tetrafluoro-4-iodophenoxyethyl vinyl ether (C2I), 2, 3, 5, 6-tetrafluoro-4-iodophenoxybutyl vinyl ether (C4I), and 2-(2, 3, 5, 6-tetrafluoro-4-iodophenoxyethoxy)ethyl vinyl ether (O3I). Well controlled cationic polymerization is achievable through the use of a proton trap, 2, 6-di-tert-butylpyridine. The use of SnCl4 as a co-Lewis acid was found to accelerate the reaction. Between the three monomers, the difference in the chain length is shown to influence the reaction rate, with the longest chain demonstrating the fastest polymerization. Initial studies of the halogen bonding ability shows that halogen bonding exists for all three monomers but is most pronounced in C4I. The polymerized vinyl ethers also exhibit halogen bonding. Due to the ease of synthesis and polymerization, these are promising new monomers to increase functionality available for polymers synthesized using cationic polymerization

    Anion Selectivity and Catalytic Potential of a Bidentate Halogen Bonding Receptor

    Get PDF
    Anion recognition is a growing field in organic chemistry. Many interactions can be employed to sequester anions from their surroundings: hydrogen bonding, electrostatic forces, metal complexation, covalent binding and hydrophobic effects. However, compared to the others, halogen bonding is relatively underexplored. As a non-covalent interaction with strict requirements, halogen bonding is showing a promising future in molecular recognition and catalysis. Here is presented the results of anion titration studies, computational data, and x-ray structures of one such halogen bonding molecule

    Hierarchical Self-Assembly of Halogen-Bonded Block Copolymer Complexes into Upright Cylindrical Domains

    Get PDF
    Self-assembly of block copolymers into well-defined, ordered arrangements of chemically distinct domains is a reliable strategy for preparing tailored nanostructures. Microphase separation results from the system, minimizing repulsive interactions between dissimilar blocks and maximizing attractive interactions between similar blocks. Supramolecular methods have also achieved this separation by introducing small-molecule additives binding specifically to one block by noncovalent interactions. Here, we use halogen bonding as a supramolecular tool that directs the hierarchical self-assembly of low-molecular-weight perfluorinated molecules and diblock copolymers. Microphase separation results in a lamellar-within-cylindrical arrangement and promotes upright cylindrical alignment in films upon rapid casting and without further annealing. Such cylindrical domains with internal lamellar self-assemblies can be cleaved by solvent treatment of bulk films, resulting in separated and segmented cylindrical micelles stabilized by halogen-bond-based supramolecular crosslinks. These features, alongside the reversible nature of halogen bonding, provide a robust modular approach for nanofabricatio

    Combining high-resolution scanning tunnelling microscopy and first-principles simulations to identify halogen bonding

    Get PDF
    Scanning tunnelling microscopy (STM) is commonly used to identify on-surface molecular self-assembled structures. However, its limited ability to reveal only the overall shape of molecules and their relative positions is not always enough to fully solve a supramolecular structure. Here, we analyse the assembly of a brominated polycyclic aromatic molecule on Au(111) and demonstrate that standard STM measurements cannot conclusively establish the nature of the intermolecular interactions. By performing high-resolution STM with a CO-functionalised tip, we clearly identify the location of rings and halogen atoms, determining that halogen bonding governs the assemblies. This is supported by density functional theory calculations that predict a stronger interaction energy for halogen rather than hydrogen bonding and by an electron density topology analysis that identifies characteristic features of halogen bonding. A similar approach should be able to solve many complex 2D supramolecular structures, and we predict its increasing use in molecular nanoscience at surfaces

    The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances

    Get PDF
    Halogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Second, the interaction strength scales with the polarizability of the bond-donor atom, a feature that researchers can tune through single-atom mutation. In addition, halogen bonds are hydrophobic whereas hydrogen bonds are hydrophilic. Lastly, the size of the bond-donor atom (halogen) is significantly larger than hydrogen. As a result, halogen bonding provides supramolecular chemists with design tools that cannot be easily met with other types of noncovalent interactions and opens up unprecedented possibilities in the design of smart functional materials. This Account highlights the recent advances in the design of halogen-bond-based functional materials. Each of the unique features of halogen bonding, directionality, tunable interaction strength, hydrophobicity, and large donor atom size, makes a difference. Taking advantage of the hydrophobicity, researchers have designed small-size ion transporters. The large halogen atom size provided a platform for constructing all-organic light-emitting crystals that efficiently generate triplet electrons and have a high phosphorescence quantum yield. The tunable interaction strengths provide tools for understanding light-induced macroscopic motions in photoresponsive azobenzene-containing polymers, and the directionality renders halogen bonding useful in the design on functional supramolecular liquid crystals and gel-phase materials. Although halogen bond based functional materials design is still in its infancy, we foresee a bright future for this field. We expect that materials designed based on halogen bonding could lead to applications in biomimetics, optics/photonics, functional surfaces, and photoswitchable supramolecules

    Halogen Bonding beyond Crystals in Materials Science

    Get PDF
    Halogen bonding has recently gained well deserved attention in present-day research for its importance in many fields of supramolecular science and crystal engineering. Although generally overlooked in comprehensive studies in the past, halogen bonding has become an important tool also in the field of materials science. An increased number of scientific reports are published every year where halogen bonding is exploited in soft materials rather than in crystal engineering. Here, we focus on a description of the most exciting contemporary developments in the field of halogen-bonded functional soft materials, assembled using the guiding principles of crystal engineering. We give a particular emphasis to those published in the past few years
    corecore