211,611 research outputs found
Hadron-hadron and hadron-nuclei collisions at high energies
A brief review is made of the present situation of hadron-hadron and
hadron-nuclei total elastic and inelastic cross sections at high energiesComment: 7 page
High Pt hadron-hadron correlations
We propose the formulation of a dihadron fragmentation function in terms of
parton matrix elements. Under the collinear factorization approximation and
facilitated by the cut-vertex technique, the two hadron inclusive cross section
at leading order (LO) in e+ e- annihilation is shown to factorize into a short
distance parton cross section and the long distance dihadron fragmentation
function. We also derive the DGLAP evolution equation of this function at
leading log. The evolution equation for the non-singlet and singlet quark
fragmentation function and the gluon fragmentation function are solved
numerically with the initial condition taken from event generators.
Modifications to the dihadron fragmentation function from higher twist
corrections in DIS off nuclei are computed. Results are presented for cases of
physical interest.Comment: 7 pages, 8 figures, Latex, Proceedings of Hot Quarks 2004, July
18-24, Taos, New Mexic
Plans for Hadronic Structure Studies at J-PARC
Hadron-physics projects at J-PARC are explained. The J-PARC is the
most-intense hadron-beam facility in the multi-GeV high-energy region. By using
secondary beams of kaons, pions, and others as well as the primary-beam proton,
various hadron projects are planned. First, some of approved experiments are
introduced on strangeness hadron physics and hadron-mass modifications in
nuclear medium. Second, future possibilities are discussed on hadron-structure
physics, including structure functions of hadrons, spin physics, and
high-energy hadron reactions in nuclear medium. The second part is discussed in
more details because this is an article in the hadron-structure session.Comment: 10 pages, LaTeX, 20 eps files, to be published in Journal of Physics:
Conference Series (JPCS), Proceedings of the 24th International Nuclear
Physics Conference (INPC 2010), Vancouver, Canada, July 4 - 9, 201
Hadron melting and QCD thermodynamics
We study in this paper mechanisms of hadron melting based on the spectral
representation of hadronic quantum channels, and examine the hadron width
dependence of the pressure. The findings are applied to a statistical hadron
model of QCD thermodynamics, where hadron masses are distributed by the
Hagedorn model and a uniform mechanism for producing hadron widths is assumed.
According to this model the hadron - quark gluon plasma transition occurs at
-250 MeV, the numerically observable MeV crossover
temperature is relevant for the onset of the hadron melting process.Comment: 10 pages, 12 figures, revtex
Kinetic description of hadron-hadron collisions
A transport model based on the mean free path approach to describe pp
collisions is proposed. We assume that hadrons can be treated as bags of
partons similarly to the MIT bag model. When the energy density in the
collision is higher than a critical value, the bags break and partons are
liberated. The partons expand and can make coalescence to form new hadrons. The
results obtained compare very well with available data and some prediction for
higher energies collisions are discussed. Based on the model we suggest that a
QGP could already be formed in the pp collisions at high energies
- …
