374,086 research outputs found
Pure motives with representable Chow groups
Let be an algebraically closed field. We show using Kahn's and Sujatha's
theory of birational motives that a Chow motive over whose Chow groups are
all representable belongs to the full and thick subcategory of motives
generated by the twisted motives of curves.
--
Motifs purs dont les groupes de Chow sont repr\'esentables.
Soit un corps alg\'ebriquement clos. Nous prouvons, en nous servant de la
th\'eorie des motifs birationnels d\'evelopp\'ee par Kahn et Sujatha, qu'un
motif de Chow d\'efini sur dont les groupes de Chow sont tous
repr\'esentables appartient \`a la sous-cat\'egorie pleine et \'epaisse des
motifs engendr\'ee par les motifs de courbes tordus.Comment: 7 page
Testing Invariance in Risk Taking: A Comparison Between Anglophone and Francophone Groups
This article investigates the measurement invariance of 3 related constructs across 2 groups sampled from Anglophone and Francophone adult populations. Multiple-group confirmatory factor analyses explored the factor structures of the Domain-Specific Risk-Taking (DOSPERT) Scale (Weber, Blais, & Betz, 2002), the Risk-Taking scale of the Jackson Personality Inventory (Jackson, 1994), and the Sensation-Seeking Scale (Zuckerman, 1980; 1994) both within and between the 2 groups of 172 Anglophone and 187 Francophone participants. The psychometric properties of the original and translated instruments are discussed, as is the meaningfulness of using these scales in these populations. Le présent article se penche sur l’invariance des mesures de trois construits corrélés pour deux groupes échantillonnés issus de populations adultes anglophones et francophones. Des analyses factorielles confirmatoires de groupes multiples ont été conduites sur les structures factorielles de l’échelle Domain-Specific Risk-Taking (DOSPERT) (Weber, Blais, et Betz, 2002), de l’échelle de prise de risque de l’inventaire de personnalité (Personality Inventory) de Jackson (Jackson, 1994), et de l’échelle de recherche de sensations (Sensation-Seeking Scale) de Zuckerman (Zuckerman, 1980; 1994) aussi bien à l’intérieur de deux groupes de 172 participants anglophones et de 187 participants francophones qu’entre ces deux mêmes groupes. Nous discutons des propriétés psychométriques des instruments originaux et traduits, de même que de la pertinence d’utiliser ces échelles au sein des populations en question.measurement invariance, psychometric scale, risk taking, sensation seeking, échelle psychométrique, invariance des mesures, prise de risques, recherche de sensations
Homology and K-theory of the Bianchi groups
We reveal a correspondence between the homological torsion of the Bianchi
groups and new geometric invariants, which are effectively computable thanks to
their action on hyperbolic space. We use it to explicitly compute their
integral group homology and equivariant -homology. By the Baum/Connes
conjecture, which holds for the Bianchi groups, we obtain the -theory of
their reduced -algebras in terms of isomorphic images of the computed
-homology. We further find an application to Chen/Ruan orbifold cohomology.
% {\it To cite this article: Alexander D. Rahm, C. R. Acad. Sci. Paris, Ser. I
+++ (2011).
Some extremely amenable groups
A topological group is extremely amenable if every continuous action of
on a compact space has a fixed point. Using the concentration of measure
techniques developed by Gromov and Milman, we prove that the group of
automorphisms of a Lebesgue space with a non-atomic measure is extremely
amenable with the weak topology but not with the uniform one. Strengthening a
de la Harpe's result, we show that a von Neumann algebra is approximately
finite-dimensional if and only if its unitary group with the strong topology is
the product of an extremely amenable group with a compact group.Comment: 7 pages, English with abridged French versio
Maximality of hyperspecial compact subgroups avoiding Bruhat-Tits theory
Let be a complete non-archimedean field (non trivially valued). Given a
reductive -group , we prove that hyperspecial subgroups of (i.e.
those arising from reductive models of ) are maximal among bounded
subgroups. The originality resides in the argument: it is inspired by the case
of and avoids all considerations on the Bruhat-Tits building of
.Comment: To appear at "Annales de l'Institut Fourier". This version avoids
completely Berkovich geometr
La Responsabilité Sociétale de L'entreprise et Les Réactions des Parties Prenantes : le Cas de L'opérateur Téléphonique Mtn et des Utilisateurs de Téléphonie Mobile au Bénin
The purpose of this research is to understand the mechanisms by which the actions of corporate social responsibility can affect organizational commitment and organizational identification consumers. From an experiment performed with video support of social responsibility of the telephone operator MTN Benin, data were collected from a sample of judgment seven hundred and ten mobile phone users. The analysis shows that the consumer perception of the actions of social responsibility of the company affects their commitment and organizational identification. Socially responsible consumption appears as a moderating variable to put direct links days. However, the communication by the company on its "good deeds" does not seem to affect these relationships
Lorentzian Flat Lie Groups Admitting a Timelike Left-Invariant Killing Vector Field
We call a connected Lie group endowed with a left-invariant Lorentzian flat
metric Lorentzian flat Lie group. In this Note, we determine all Lorentzian
flat Lie groups admitting a timelike left-invariant Killing vector field. We
show that these Lie groups are 2-solvable and unimodular and hence geodesically
complete. Moreover, we show that a Lorentzian flat Lie group
admits a timelike left-invariant Killing vector field if and only if
admits a left-invariant Riemannian metric which has the same
Levi-Civita connection of . Finally, we give an useful characterization of
left-invariant pseudo-Riemannian flat metrics on Lie groups
satisfying the property: for any couple of left invariant vector fields and
their Lie bracket is a linear combination of and
- …
