121,719 research outputs found

    Optimization by gradient boosting

    Full text link
    Gradient boosting is a state-of-the-art prediction technique that sequentially produces a model in the form of linear combinations of simple predictors---typically decision trees---by solving an infinite-dimensional convex optimization problem. We provide in the present paper a thorough analysis of two widespread versions of gradient boosting, and introduce a general framework for studying these algorithms from the point of view of functional optimization. We prove their convergence as the number of iterations tends to infinity and highlight the importance of having a strongly convex risk functional to minimize. We also present a reasonable statistical context ensuring consistency properties of the boosting predictors as the sample size grows. In our approach, the optimization procedures are run forever (that is, without resorting to an early stopping strategy), and statistical regularization is basically achieved via an appropriate L2L^2 penalization of the loss and strong convexity arguments

    Learning Nonlinear Functions Using Regularized Greedy Forest

    Full text link
    We consider the problem of learning a forest of nonlinear decision rules with general loss functions. The standard methods employ boosted decision trees such as Adaboost for exponential loss and Friedman's gradient boosting for general loss. In contrast to these traditional boosting algorithms that treat a tree learner as a black box, the method we propose directly learns decision forests via fully-corrective regularized greedy search using the underlying forest structure. Our method achieves higher accuracy and smaller models than gradient boosting (and Adaboost with exponential loss) on many datasets

    Proximal boosting and its acceleration

    Full text link
    Gradient boosting is a prediction method that iteratively combines weak learners to produce a complex and accurate model. From an optimization point of view, the learning procedure of gradient boosting mimics a gradient descent on a functional variable. This paper proposes to build upon the proximal point algorithm when the empirical risk to minimize is not differentiable to introduce a novel boosting approach, called proximal boosting. Besides being motivated by non-differentiable optimization, the proposed algorithm benefits from Nesterov's acceleration in the same way as gradient boosting [Biau et al., 2018]. This leads to a variant, called accelerated proximal boosting. Advantages of leveraging proximal methods for boosting are illustrated by numerical experiments on simulated and real-world data. In particular, we exhibit a favorable comparison over gradient boosting regarding convergence rate and prediction accuracy

    Generalized Boosting Algorithms for Convex Optimization

    Full text link
    Boosting is a popular way to derive powerful learners from simpler hypothesis classes. Following previous work (Mason et al., 1999; Friedman, 2000) on general boosting frameworks, we analyze gradient-based descent algorithms for boosting with respect to any convex objective and introduce a new measure of weak learner performance into this setting which generalizes existing work. We present the weak to strong learning guarantees for the existing gradient boosting work for strongly-smooth, strongly-convex objectives under this new measure of performance, and also demonstrate that this work fails for non-smooth objectives. To address this issue, we present new algorithms which extend this boosting approach to arbitrary convex loss functions and give corresponding weak to strong convergence results. In addition, we demonstrate experimental results that support our analysis and demonstrate the need for the new algorithms we present.Comment: Extended version of paper presented at the International Conference on Machine Learning, 2011. 9 pages + appendix with proof

    ada: An R Package for Stochastic Boosting

    Get PDF
    Boosting is an iterative algorithm that combines simple classification rules with "mediocre" performance in terms of misclassification error rate to produce a highly accurate classification rule. Stochastic gradient boosting provides an enhancement which incorporates a random mechanism at each boosting step showing an improvement in performance and speed in generating the ensemble. ada is an R package that implements three popular variants of boosting, together with a version of stochastic gradient boosting. In addition, useful plots for data analytic purposes are provided along with an extension to the multi-class case. The algorithms are illustrated with synthetic and real data sets.
    corecore