364,581 research outputs found
Ghost Cosmology: Exact Solutions, Transitions Between Standard Cosmologies and Ghost Dark Energy/Matter Evolution
The recently proposed infrared modification of gravity through the
introduction of a ghost scalar field results in a number of interesting
cosmological and phenomenological implications. In this paper, we derive the
exact cosmological solutions for a number of scenarios where at late stages,
the ghost behaves like dark matter, or dark energy. The full solutions give
valuable information about the non-linear regime beyond the asymptotic first
order analysis presented in the literature. The generic feature is that these
ghost cosmologies give rise to smooth transitions between radiation dominated
phases (or more general power-law expansions) at early epochs and ghost dark
matter resp. ghost dark energy dominated late epochs. The current age of our
universe places us right at the non-linear transition phase. By studying the
evolution backwards in time, we find that the dominance of the ghost over
ordinary baryonic matter and radiative contributions persists back to the
earliest times such that the Friedmann-Robertson-Walker geometry is dictated to
a good approximation by the ghost alone. We also find that the Jeans
instability occurs in the ghost dark energy scenario at late times, while it is
absent in the ghost dark matter scenario.Comment: 31 pages, 9 figures; added references, clarified a few minor point
On the infrared behaviour of Gluons and Ghosts in Ghost-Antighost symmetric gauges
To investigate the possibility of a ghost-antighost condensate the coupled
Dyson--Schwinger equations for the gluon and ghost propagators in Yang--Mills
theories are derived in general covariant gauges, including ghost-antighost
symmetric gauges. The infrared behaviour of these two-point functions is
studied in a bare-vertex truncation scheme which has proven to be successful in
Landau gauge. In all linear covariant gauges the same infrared behaviour as in
Landau gauge is found: The gluon propagator is infrared suppressed whereas the
ghost propagator is infrared enhanced. This infrared singular behaviour
provides indication against a ghost-antighost condensate. In the
ghost-antighost symmetric gauges we find that the infrared behaviour of the
gluon and ghost propagators cannot be determined when replacing all dressed
vertices by bare ones. The question of a BRST invariant dimension two
condensate remains to be further studied.Comment: 34 pages, 6 figures, Version to be published in Phys. Rev.
A Ghost Story: Ghosts and Gluons in the IR regime of QCD
We discuss the different methods to obtain reliable informations about the
deep infra-red behaviour of the gluon and ghost Green functions in QCD. We
argue that a clever combination of analytical inputs and numerical ones is
necessary. We illustrate this statement about the distinction between two
classes of solutions of the ghost propagator Dyson-Schwinger equation (GPDSE).
We conclude that the solution II ("decoupling") with a finite renormalised
ghost dressing function at zero momentum is strongly favored by lattice QCD, We
derive a method to solve numerically the GPDSE using lattice inputs concerning
the gluon propagator. We derive an analytical small momentum expansion of the
Ghost dressing function. We prove from the large cut-off behaviour of the ghost
propagator renormalisation constant, , that the bare ghost
dressing function is infinite at the infinite cut-off limit.Comment: 12 pages 6 figure
Quintessence Ghost Dark Energy Model
A so called "ghost dark energy" was recently proposed to explain the present
acceleration of the universe expansion. The energy density of ghost dark
energy, which originates from Veneziano ghost of QCD, is proportional to the
Hubble parameter, , where is a constant which is
related to the QCD mass scale. In this paper, we establish the correspondence
between ghost dark energy and quintessence scalar field energy density. This
connection allows us to reconstruct the potential and the dynamics of the
quintessence scalar field according to the evolution of ghost energy density.Comment: 8 pages, 7 figures, version to appear in Europhys. Let
- …
