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Infrared behavior of gluons and ghosts in ghost-antighost symmetric gauges
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L. von Smekal
Institute for Theoretical Physics Ill, University of Erlangedurnberg, Staudtstrasse 7, D-91058 Erlangen, Germany
(Received 16 April 2003; published 8 August 2003

To investigate the possibility of a ghost-antighost condensate, the coupled Dyson-Schwinger equations for
the gluon and ghost propagators in Yang-Mills theories are derived in general covariant gauges, including
ghost-antighost symmetric gauges. The infrared behavior of these two-point functions is studied in a bare-
vertex truncation scheme which has proven to be successful in the Landau gauge. In all linear covariant gauges
the same infrared behavior as in the Landau gauge is found: The gluon propagator is infrared-suppressed
whereas the ghost propagator is infrared-enhanced. This infrared singular behavior provides an indication
against a ghost-antighost condensate. In the ghost-antighost symmetric gauges we find that the infrared behav-
ior of the gluon and ghost propagators cannot be determined when replacing all dressed vertices by bare ones.
The question of a BRS invariant dimension-2 condensate remains to be further studied.
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[. INTRODUCTION the employed truncation is finally judged by comparing its
results with either the results of Monte Carlo calculations or
A large body of experimental data supports the generagxperiments. The latter is easily possible as the Schwinger-
belief that quantum chromodynami¢®CD) is the correct Dyson approach has been successfully applied to the descrip-
theory of strong interactions. Nevertheless we are left withtion of hadron phenomenology, see, e.g., the recent reviews
the task of understanding the physics of hadrons, and herelBefs.[2,3] and references therein. Furthermore, despite re-
in particular the mechanisms of confinement and spontanesent progress by improved lattice algorithms, and despite the
ous breaking of chiral symmetry. Gaining such insight re-increasing computer time available for lattice calculations,
quires reliable nonperturbative treatments of QCD. Herebyncluding dynamical fermions is exceedingly cumbersome
Monte Carlo lattice calculations provide a rigorous nonper-and finite baryon densities are hardly accessible in realistic
turbative approach to QCD. They have the advantage of full\5U(3) lattice simulations. On the other hand, dynamical fer-
respecting gauge invariance independently of the size of thmions and finite baryon densities can be relatively easily
lattice used. On the other hand, the extraction of the contreated in the Schwinger-Dyson approach to QCD.
tinuum values of physical observables from the lattice data In recent years the fundamental Schwinger-Dyson equa-
requires a careful study of the scaling regime. The observetions of SUN) Yang-Mills theories have been solved explic-
scaling behavior, however, will be in general contaminatedtly in certain approximations yielding gluon and ghost
by finite size effects. With respect to studies of the confinepropagator§3—5,7—9. In these calculations, carried out in
ment mechanisms this is problematic: As infrared singulariLandau gauge, vertex functions constructed from appropriate
ties are expected to occur in QCD there is a definite need foBlavnov-Taylor identities as well as bare vertices have been
a continuum-based nonperturbative approach. employed. The results proved to be qualitatively similar
To this end we note that the Schwinger-Dyson equationemong each other and agree well with recent lattice calcula-
of QCD can address directly the infrared region. They pro+tions[10-14 for both the gluon and ghost propagator. The
vide genuine nonperturbative information and are at theeommon, though gauge dependent, result of both approaches
same time fully formulated in the continuum theory. Such anis an infrared suppressed gluon propagator and an infrared
approach is, however, less rigorous than lattice calculationenhanced ghost propagator. Furthermore, the inclusion of dy-
in the sense that truncations of the tower of coupled equanamical quarks does not alter the infrared behavior of gluon
tions are necessary in practical calculations. Justifications faind ghost propagators and leads to only slight modifications
such truncations can be given on the basis of general prirfor nonvanishing momenta for the number of light flavors
ciples such as e.g., a restriction to the first Gribov region, sebl;<3 [15]. These results especially imply that the ghosts
Ref.[1] and references therein. Nevertheless, the validity otake the role of the long-range correlations in the theory.
Such a behavior is in accordance with the Gribov-Zwanziger
horizon condition, see, e.g., Ré¢f] and references therein,
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"Present address: Institute for Theoretical Physics, Heidelbergauge includes the statement that the ghost propagator
University, Philosophenweg 16, D-69120 Heidelberg, Germanyshould be more singular than a simple pplé].

Email address: C.Fischer@thphys.uni-heidelberg.de The central assumption in the Kugo-Ojima confinement
*Email address: hugo.reinhardt@uni-tuebingen.de scenario is the invariance of the measure of the functional
$Email address: smekal@theorie3.physik.uni-erlangen.de integral under Becchi-Rouet-StordBRS) transformations

0556-2821/2003/68)/04500323)/$20.00 68 045003-1 ©2003 The American Physical Society



ALKOFER et al. PHYSICAL REVIEW D 68, 045003 (2003

and the existence of a nilpotent BRS operafiof]. The most  ghost propagator excludes a ghost mass and/or a ghost-
general Lorentz invariant and globally gauge invariant La-antighost condensate. Therefore the question arises whether
grangian of dimension 4 that can be constructed under thig general ghost-antighost symmetric gauges of the infrared
assumption has been derived in R@fg]. In addition to the behavior of the propagators can be interpreted in terms of
structure appearing in ordinary linear covariant gauges, thgluon and ghost “masses.”
Lagrangian contains a second gauge parameter which con- This paper is organized as follows. In Sec. Il we summa-
trols the symmetry of the Lagrangian under ghost-antighosfiz€ Some properties of the general Lagrangian given in Ref.
interchange. Furthermore, a four-ghost interaction term i$18] and outline the derivation of the coupled set of Dyson-
present. We will use this Lagrangian as the starting point oSChwinger equationtDSES for the ghost and gluon propa-
our investigation. gators. As the Lagrangian contains a four-ghost interaction a
Our main interest in this paper will be to explore the rich structure in the ghost DSE emerges which closel_y re-
situation in these general covariant gauges. Away from th&embles the one already present in the gluon equation of
Landau gauge limit the connection between the Kugo-Ojim#rdinary linear covariant gauges. In Sec. lll, we employ a
confinement criterion and the infrared behavior of the ghost'uncation scheme that has proven to be successful in the
dressing function is far from obvious. In particular, the ques--@ndau gauge and study in particular the infrared behavior of
tion might arise whether it is possible that the infrared domi-the ghost and gluon dressing functions for general values of
nant role of the ghost dressing function, seen in the Landal’® two gauge parameters. Furthermore, we show that in the
gauge, is assumed by other degrees of freedom like the |O,ghost.-ant|ghost symmetric gauges the .contrlbutlons of_the
gitudinal gluons in other covariant gauges. As a matter of€nuine two-loop termegeneralized squint and sunset dia-
fact, infrared dominance of longitudinal gluons is seen ifdram in the gluon and the ghost DSEs must be properly
stochastic quantization is used instead of the Faddeev-Popddken into account in the infrared. In the linear covariant
quantizatio19]. Furthermore, calculations based on many-92Uges no such terms are present in the ghost DSE, and
body techniques provide evidence that in Coulomb gaugéelf-co_nsstent results can be obtained assuming the .two-loop
(employing the usual Faddeev-Popov quantizatidghe (€rmsin the gluon equation to be subIeadmg in the infrared
ghosts and the Coulomb gluons are both infrared-enhancd@?)- In general ghost-antighost symmetric gauges, on the
[20]. This latter picture for Coulomb gauge QCD obtaias othe_r han_d, the bare-v_ertex truncation is insufficient to
least partial support from latticg21] and renormalization- clarify the infrared behavior of the gluon and ghost propaga-
group calculation§22]. Care has, however, to be taken as thetors. In Sec. IV we will prow.de. numerical squuqns for the
Coulomb gauge limit is highly nontrivial, see, e.f23]. On DSE_s in the Landau gauge I|m|t of the ghost-antighost sym-
the other hand, the benefit of the Coulomb gauge is obvioudn€tric case of the Lagrangian and recover the solutions
The time-time component of the gluon propagator and thdound in[9] from a different direction in two-d|m_en5|onal
heavy quark potential fulfill a strictly valid inequalifg2,24 ~ 9auge parameter space. In the last section we give our con-
with the Coulomb string tension being several times |arge,clu5|ons. Technical details are deferred into four Appendixes.
than the asymptotic ong25]. Even more important, quark
confinement directly results from infrared-enhanced Cou- Il. THE DYSON-SCHWINGER EQUATION
lomb gluons, see, e.g., Ref26,27] and references therein. FOR THE GHOST PROPAGATOR
Instead of exploring the correlation functions in noncovariant
gauges, in this paper we will study Green’s functions in co-
variant albeit nonlinear gauges. The most general Lagrangian of dimension 4 that is Lor-

Ghost-antighost symmetric gauges are of special intere§n{z invariant, globally gauge invariant, invariant under
when investigating the possibility of a BRS invariant con- BRS- and anti-BRS-transformations, Hermitian, and omit-

densate of dimension 2 in QCD. Such condensates occur g topological terms, i$18]
the operator product expansion of the gluon propad@®+

A. Renormalized double BRS symmetry

2
30], bear some relation to the Gribov probld®l], may KZEFZ +M+3(1_f) E(EXC)Z

result in gluon mass generati¢d2], and may be important 4 2\ 2 2)2

for confinement in generdB3,34]. Hereby it has been clari-

fied recently that these condensa_tes are highly _no.nlocal —i EDM?a#c—i<1— E) (;MEDMC_ (1)
[35,36 and that they are only BRS invariant after eliminat- 2 2

ing the Nakanishi-Lautrup field via its equation of motion . . _—
[37]. This kind of restricted BRS invariance has been calle The field strength tensor and the covariant derivative are de-

“on-shell BRS invariance” and can be related to a residual ined as
gauge symmetry after gauge fixing. Fa — g A%— g A?_ gfabepb ac
The solutions of the gluon and ghost Dyson-Schwinger w= 9™ A0 weve
equations in a Landau gauge provide a somewhat different
picture: Whereas the operator product expansion of the gluon
propagator requires such a dimension-2 condensate, its inter- o \a_ cabchac :
pretation with respect to a gluon mass is made impossible b§nd the abbreviationc(<c)®=gf™* c*c® is used. Note that
the gluon propagator’s infrared behavibr(p?=0)=0 in- oth ghost and antighost fields, and c, respectively, are
stead ofD(p?=0)=1/m?. Also the highly infrared singular chosen to be Hermitia"=c andc'=c. This is necessary

b_ b b
D}’=4d,6"+gf* A}, (2

045003-2
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to maintain the Hermiticity of the Lagrangian for all values the ghost number by-1 (—1), thus we can assign the value
of the gauge parameteksand «, see, e.g.[17] and refer- Ngp=+1 (Ngp=—1) to the(anti- BRS-operator itself. The
ences therein. Furthermore, we work in Euclidean spaceBRS-operator and the anti-BRS-operator are nilpotent and
time. ) related bys, s, +s,s,=0. These properties are, however, lost

~ From the two gauge parameters of the Lagrangian, thgyhen considering “on-shell” BRS-transformations.
firstone\, is the usual parameter of linear covariant gauges, The Maurer-Cartan conditions, in addition to the forms of
whereas the second one, controls the symmetry properties s,c and s,c, for ghostsc and antighostsc in a ghost-

of the ghost content. For the cases=0 and =2, one ; ; :
X - . antighost symmetric formulation, thereby requiie
recovers the usual Faddeev-Popov Lagrangian and its mirror g 4 y requiies]

image, respectively, where the role of ghost and antighost o
have been interchanged. For the value 1, the Lagrangian s,c+s,c+2Z,(cxXc)=0. 4
is completely symmetric in the ghost and antighost fields.

In Ref.[18] it has been shown that the S matrix of the ~ The correspondence between the bare Lagrangian and its
theory is invariant under variation of the gauge parameters 'enormalized version including counterterms is given by the
and a. Therefore, gauge invariance of physical observableollowing rescaling transformations:
is ensured. One-loop calculations confirm in particular the
independence of the first nontrivial coefficient of {Rdunc- A2 \Z.AR, CRcPZ4c3cP,
tion from the gauge parameters. #

Furthermore, the existence of a renormalized BRS algebra

has been provefil8], thus the theory given by Eq1) is B®-B¥\Z;, g—Z4,
multiplicatively renormalizable. From one-loop calculations,
one finds that the Faddeev-Popov values of the gauge param- a—Z,a, N—Z\, )

eters,a=0 anda=2, are fixed points under the renormal-

ization procedure. The same is true for the ghost-antighosfnere  five independent  renormalization  constants

symmetric casex=1. The case of the Landau gauge, Z3, 23, Zy4, Z,, and Z, have been introduced. Further-

=0, corresponds to a fixed point as well, because the con: . s
more, four additional renormalization constants are related to

. A .
zg%mt d,A*=0 is not affected by a rescaling of the gluon these via Slavnov-Taylor identities,
To be specific, the renormalized BRS, X and anti-BRS ~ 5
(s,) transformations are given by 2,=2423¥, 7,=242573,
S/A= —23D,c, S/A= —23DrC, 2422525, 2422525_ (6)
1 1 Note, however, that contrary to standard Faddeev-Popov
S;C= —le(CXC), S;C= —21§(C><C), gaugesZ, #Z3, e.g., at one loopMS schemg one hag43]
2
. A5 = 7 =75 3 N[ 1- 2\ 7
SrC=B—§Zl(CXC), A 3 16’7T2 € 02 2 .
The gauge-fixing part of the Lagrangiél) can be written
s,c=—B— ( 1— g)zl(& c), (3)  in the following three equivalent ways:

i 1 .
. a a\l. — R i
5= 5708 1- oo, £ 2 g, S BAATIRZNCT

343
Z, N
_ a\l. — e a\le, — — +Z—3(1—a)§sr(csrC) (8)
srB=—(1—E)Zl(c><B)+E 1—5)521[(c><c)><c].
S s TN A 9
Here D, =d—23°Z,(AX) is the covariant derivative in the =I5 C 'Z.2 ©

adjoint representation, with color and Lorentz indices sup-
pressed. Note that the Nakanishi-Lautrup auxiliary fiBld i ZyN_, Ly, al\N —
can be eliminated from the BRS-transformations by using its =iBoA+ o~ 5B +-Z15|1- 5]5(cXc)
\ : ! . Zy 2 Z372 2)2
equation of motion. The corresponding BRS-transformations
are called “on-shell.” Note furthermore that the application

of the BRS-operatos,(gr) on a field increase&decreases

- a\— .
+iZ4 (1—§)caDrc+§cDrac . (10

045003-3
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This is verified by direct calculation via the transformations 5S 7w o\
defined in Eqs(3). In the form of Eq.(10) the gauge fixing —= Z3i(dD,c)3+ ZLZl( 1- > (cxB)g
Lagrangian shows that the renormalization constants intro- oCy 3
duced in Eq.(3) correspond to the replacements of bare by 7\
. " . AN\~ (04 o -
renormalized quantities as given above. _ i_( 1- =|[(cxc)Xc]?
We may rewrite the gauge fixing Lagrangian of Ef0) Zy 4 2
once more, Z )
S . —a MY Hha
=Zgl((9DrC)X— Z—SrBX
3
Z)\ )\ Z)\~ o 03 )\ —
_ N2 EAsT T 2 — VAR
Lor=iBoA+ S 5B+ 2 71| 1 Z)Z(CXC) =—|sr<aA;‘—| < Bg), 13

~ 1 — ~ 1 —
+iZ3=(cdD,c+cD,dc)+iZ,(1—a)zdA(cXcC).
§:Z3|(0DrC)X+ Z—SZlE(CXB)X

X

(11)

[(cxc)xc]?

N ~2a o
This emphasizes the role of the gauge parametein this + Z_szlz( 1- 2
form, the only term not symmetric under Faddeev-Popov
conjugationc—c andc— —c, is the last onéwhich is anti-
symmetric with respect to Faddeev-Popov conjugatidin
vanishes fora=1. With the current(rea) Hermiticity as-

~ . Zy\\
=Zji (ﬁDrC)g— Z—gsrB)&(1

signment for ghost and antighost fields, the Lagrangian is =—iSr((9Aa—iZ>\—)\Ba _ (14)
Hermitian for alla, and it reduces to the standard Faddeev- o Zy
Popov form fora=0. We could also introduce Hermitian .
adjoint ghost and antighost fields, with the assignmeht The two DSEs then follow readily from
=c, via the Caley map44]. This would then lead to
sy 05 _ s (15)
—¢C, )= cy—) = .
scd Y 5cd o

S=iBoA+ AN T P L )2
gF Z32 Z; 12 7)z(c%¢c Of course, they are related by Faddeev-Popov conjugation
C ep Which interchanges the two. In particular,

+23%(?aDrc+?D,ac) B
Crc=C, CgL=-C,
~ 1 — _ B
+Zy(1=a) y[c(9AX )~ c(dAXC)]. (12) CepB=B+Z;(1—a)(cxc), CrpA=A.
(16)

. . ) _ ) The transformation of the Nakanishi-LautrBgfield follows
While this form of the Lagrangian, which we will not use om compatibility with BRS/anti-BRS invariance and
further herein, is still Hermitian, it no longer reduces to the

form of standard Faddeev-Popov theory tor 0. Thus the — .
Faddeev-Popov Lagrangian is only consistent with Hermitic- Sy =CrpSC pp. 17
ity for the choice of real ghost fieldgl7]. With complex
conjugate ghost and antighost fields, additional termsafor
=0 survive (which are absent in standard Fadeev-Popo
gauges Only for a=1 do both versions, with Hermitian
real or complex conjugate ghost pairs, have the same L
grangian and may be interchanged arbitrarily.

On the level of the BRS and anti-BRS transformations we
an have this form of Faddeev-Popov conjugation for arbi-
trary «. However, it is relatively easy to verify that the La-
agrangian, i.e., the measure of the theory, is not invariant un-
derC gp and thus ghost and antighost DSEs are not identical,
unlessa=1 or A=0: With the above Faddeev-Popov con-
jugation rule for theB-field, the sign change in the last term

B. Ghost and antighost Dyson-Schwinger equations of Eq. (11) is exactly compensated by the first term,

Without invariance under Faddeev-Popov conjugation,

i.e., without ghost-antighost symmetrg€1 or \=0), we  IBIA+iZ1(1—a)3dA(cxc)

have separate ghost and antighost DSEs whicmat@len- Cep o o

tical. Consider the following representations of the gliast —i[B+Z1(1—a)(cXc)]dA—iZ,(1—a)}dA(cXc)
tighosd derivatives of the actioffor brevity we indicate by B

subscripts the space-time arguments of fields =iBaA+iZ,(1— a)LdA(cXc). (19

045003-4



INFRARED BEHAVIOR OF GLUONS AND GHOSTS IN.. .. PHYSICAL REVIEW B8, 045003 (2003

In this way, the violations of Faddeev-Popov conjugationwill see at the end of this section. Before that, we give a

invariance can entirely be moved into the tesAB?, and  convenient(symmetrized form of the ghost DSE valid for

they thus obviously disappear in the Landau gaugeéd. On  arbitrary ¢ without ghost-antighost invariance. Note that we

the other hand, in the more general ghost-antighost symmetould equally have started from the ghost derivative in Eq.

ric case, witha=1 andCpB=B, the theory does have the (13) and( 05(5/503)8 )= 2P dxy- This would lead us to

invariance under Faddeev-Popov conjugation fornathnd  the Faddeev- -Popov conjugate of E&2) [obtained from Eq.

we can then immediately conclude that expectation values qb2) with c—c, c— —c, and a—2— «]. Adding the two,

Crp0dd operators vanish. we obtain a Faddeev-Popov symmetric version in the place
Let us now look at one of the ghost DSEs, e.g., from Eqof Eq. (22),

(14) we obtain

S Z
5ab5xy=<5—?c > Z4(i(9D,c)3c )——<(srBa) Cy)- (aAa&Ab> 232[(| (dD,c)ic )+(c i(0D,c)%)]
' (19 .
5 T a s b
For the second term on the right-hand side we write '212(1 a){9AL(CXC)y). (25)

((s:B)ey) = (s(Bicy)) — (Bi(siCy)) Just as we have a doubling of ghost DSEs, in the absence of
Faddeev-Popov conjugation invariance, we also have a dou-
)(Ba(cx C)b> (20) bling of Slavnov-Taylor identities. As the result of one such

=—(B{By)+24( 1 OF 10K S
new Slavnov-Taylor identity we will derive below that

where we have used that expectation values of total BRS

variations vanish. For th&-field correlations, and with its

equation of motiorZ, A B=iZ3dA, one furthermore has }@Aa cxc) > Zs [{i(dD,c)%c > (c i(oD, C)a>]
2

26)
Z\ Z, (
Z_3<B§Bk;> = 5ab5Xy— Z)\—)\<(9A30"A5>. (21)

This allows us to write for the ghost DSR5) and general
Inserting Egs.(20) and (21) into the ghost DSE19), we 4, finally,
arrive at

3 ~ . Z a
—)\<(?A§(?A5>=Zg<l(r9DrC)QE$> A—i(aAé‘aA*’) 23“1— E)(i(aDrc)f}Eg}

+iZ,4(1 )(aAa(cx o). (22 + %(cgi(aDEﬁ) :

(27)

In the last term herein we inserted the equation of motion
(e.o.m) for the B-field again. This term is odd under For @=0 (or 2) the left-hand side reduces to unity and one
Faddeev-Popov conjugation and thus vanishes in the ghostbtains the ghost DSE of standard Faddeev-Popov theory.
antighost symmetric case=1, as asserted above. We thus For «=1 both terms on the r.h.s. are identical and add up to
have the important form of the ghost DSE in the Faddeevthat of Eq.(23).
Popov symmetric formulatioriin which there is only one The main difference, as compared to the ordinary
such DSE, Faddeev-Popov gauge, in an explicit representation of the
ghost DSE will be a new type of diagrams generated by the
Z3 arb four-ghost interaction. The formal structure of the gluon
ZTAMA Ay =Z3(i(9D;C)} (23)  DSE, on the other hand, remains unchanged.
For completeness we have provided a derivation of the
Note that we obtain the same equation for standard Faddeeghost DSE starting directly from the Lagrangiék) in Ap-
Popov theory &=0). The important difference from the pendix A. For all details, the interested reader is referred to

standard form of the ghost DSE is given by this appendix as well as Appendix B, which contains the
definitions of Green’s functions and the decompositions of

(24) full into connected and one-particle irreducible Green'’s func-
Oy tions. Employing the definitions of the bare ghost-gluon and
which vanishes in the usual Faddeev-Popov theory. For gerthe bare four-ghost vertex, see Appendix B, the Dyson-
eral &, however, the Slavnov-Taylor identities are modified Schwinger equation for the ghost propagator in coordinate
also and this contribution no longer needs to vanish as wepace reads

Z3(OAZIA)) — Z\\ 5705,

045003-5
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[ng(x—y)]—1=23[Dg’>ab(x—y)]—1—21f d*zd*ud*vd*z,d*z,d*zsI 9y, u,0) DS (v —2y)
XFtha(zl,z3,x)ng(u—z3).—ZJ d*udvTPP"(x,u,0,y)DE (v —u)
=11 4 4 g4 g4 g4 g4 (0)bdgf
~Zi5 d*zd*ud®v d®ud*u,d*usd®u, DR 9y, z,v,u)DE(U—us) DE (v —uy)

o ) ~ 1
><FL%%'(U3,X,U4,U2)D§(U3—z)—Z4§f d*zd*ud*v d*u,d*u,d*uzd*u,d*us

XT Ry, z,0,u)DE (U1~ ug) DE(U—us) T (Ug X, Us) DE (v — up) TS )(uy U3, Up) DE (U3~ 2).

(28)
Fourier transformation to momentum space yields
1_ (0) 1 9°Ne [, o 5 ONe [, (o)
[Da(p)] *=Zs[DE(p)] *-Z, L 2m) qu (p,q)D,w(p—q)Fv(q.p)De(q)—Z4( )4jdqr4ghDG(Q)
Q‘LNgfd“qu”D (61)Da(P— a1~ d2) T agn(P,01,02)Da(d2) — Z L g™
42(27_[_)8 142+ 4gh~ G\M1 G 17 Y2/1 4gh 1,42 G\42 44 (27T)8
x J d*a105T 4D 0 (P— A1) Da(qL)T,(P,0a) Do) T u(—P+d1+0s,02)Da(P—d1—02). (29

The color traces have already been carried out and the reduced vertices defined in Appendix B have been used. The four-ghost
interaction generates three new diagrams in the ghost equation, a tadpole contribution and two two-loop diagrams. Further-
more, the bare ghost-gluon vertex depends on the gauge parameter

L k,p,a) =gf**52m) 6 (k+a-p)T(p,)

(0) _ (¢4 (¢4

Note the symmetry between the the ghost momergyrand the antighost momentugy), , when the gauge parameteris set
to 1.

C. Projection of the gluon equation

The respective equation for the gluon propagator is formally the same as in the Faddeev-Popov case. Differences occur in
the explicit form of the bare ghost-gluon vertex and the dressed vertices in general depend on the gauge parameters. The gluon
DSE reads

~ O°N,
[D(p)],,=Zs[DO(p) ,L3+zl(927)4f d*ar'(p,q) De(p—a)I',(q,p)Ds(q)

r'® (p,a) D,, (P—A)T, 0 (q,P)D gy Z fd“ r® p
12(2 )4f q /Lp(r(p q) pp (p Q) p u—(q p) g ( ) 42 (2 )4 Hpo p((q)
1eNS [, ©
- 46W d* 1020 penDppr (d2) Dy (P02 A1) L 5110767 (P,01,02) Dy (A1)
1 g4N2 ,
242(2 )SJd 01021 20D (D= 01— U2) D (AT 1 o (P— 01— G, 0p)
XD (P=dp) T ¢ (P—d1,d1) Dy (Q1). (31)
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FIG. 1. The coupled gluon and ghost Dyson-
Schwinger equations from a BRS and anti-BRS
symmetric Lagrangian. Each equation contains
one-loop diagrams, a tadpole contribution, and a
sunset and a squint diagram.

Both equations are shown diagrammatically in Fig. 1. Onéhand side we project the equation on its longitudinal and
clearly sees the striking similarity between the ghost and théransverse parts. It is well known that for linear covariant
gluon equation once a four-ghost interaction has been intragauges,w=0, the longitudinal part of the gluon propagator
duced. Both equations have bare and one-loop parts, a tatemains undressd@]. However, away from linear covariant
pole contribution, a sunset, and a squint diagram. gauges this is not the case, as can be seen from the corre-
In order to sort the various contributions of the gluonsponding Slavnov-Taylor identity derived [A8]. We then
equation to the inverse of the gluon propagator on the lefthave three dressing functions in the general case and the

7o = 2+ VIR H VAR VI VI + VIS 4 Vg + Vi

sun sun squint squint squint squint squint
+VrEL + Vi + Verrr + Virrr + Viror +Veoor + Vizor

FIG. 2. Various contributions from the respec-
tive diagrams in the transverse and longitudinal
gluon equation and the equation for the ghost
dressing function.

T = 2 W L WS L WS W Wi Wi 4 Wi

sun sun squint squint squint squint squint
WL AW+ Weprr + Wrrr, +Wrrrp +Weinn +Wiinn

G[lp) — ZS + U%ress + UzLiress + Utad + s U;qUi”t + Uz‘lui"t
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propagators are given by b

S(0A%C)) = — Z3(dD, c)§_§+aAa(B zl ? exc)

(34)
2
:(%_ pggy) 2%\ Lo Z)D,va @ b
S(0AZC)) = —Z4(9D,C)3ch— IAT B+21(1—% (cxc)
G(p) y
De(p)=— : (33 (35)

The transversal and longitudinal gluon dressing function

Z(p?) andL(p?) can be extracted by contracting the gluon S‘I'he corresponding vacuum expectation values vanish, and

equation with the transversal and longitudinal projector, re taking combinations of the expectation values of these equa-

spectively. The results are given graphically in Fig. 2, Wheret'ons we obtain

we also specify our notation for the different contributions

being analyzed in the next section. Contributions in the

transversal part of the gluon equation are denoted by the 0=(1—3)<s Aa_b)> (s (9AZc b)>

symbol V, contributions in the longitudinal part by, and 2 fl 2"

the ones in the ghost equation by The subscripty andL

indicate the respective parts of the gluon propagator running — (1_ f)«aD c)dch

around in the loops of the diagrams and abbreviations for the 3

diagrams are used. For example, the symWp}7 denotes a

contribution from the sunset diagram to the longitudinal + 74— <(3D c)lc §>+<ﬂAaBb> (36)

gluon equation with two longitudinal and one transverse part 2

of the gluon propagator running in the loop. To isolate the

dressing functions, the left-hand sides of the equations have

already been divided by factors op3andp?, respectively. Upon insertion of the e.o.m. of tHg-field, Z,\ B=iZ30A,

this directly leads to Eq(27). On the other hand, the ghost

D. Generalized Slavnov-Taylor identities DSEs from Eqs(13) and(14) allow us to eliminate the first

To derive the generalization of the Slavnov-Taylor iden-tWO terms on the r.h.s., multiplying to them appropriate fac-

tity for the longitudinal gluon propagator, we start from the S Of.allj. and 1~ a/2 and inserting these expression in Eq.
following BRS variations: (36), yielding

2

Zy(OAZIA)) = Z)\ (56‘“ Sxy— |212(1——)<(&A><c) >+—z 2(1—% ([(cxc)xc]3ch

2

ach Z\\~
|212 1——((&A><c)X >+—Z 7 (37)

- §)<[<?xc> xclic) .

This generalizes the Slavnov-Taylor identity for the longitu-Note that close to the Landau gauge the corrections to the
dinal part of the gluon propagator which, contrary to theunity of the standard Faddeev-Popov gauges are suppressed
standard Faddeev-Popov gauges, does in general acquivg one order in the gauge paramekter
renormalization by the interactions, cf. EJ). On the r.h.s. A further Slavnov-Taylor identity is obtained by adding
of the Slavnov-Taylor identity, the terms on the third line arethe expectation values of the BRS variations in E§4) and
the Faddeev-Popov conjugate of those on the second. In th{85):
ghost antighost symmetric case fer=1 they are identical.
In this case the Slavnov-Taylor identity simplifies,
0=(s, (AP >+(s (9A%c ))
~ 1
Z3(0AZIAD) =Z)\ 6ab5Xy—i21§<(ﬁA><c)§Eb
3 = —Z5((9Dc)5cy) — Z3((9D C)5cy)

+Z_Z<[(CXC)XC] . (38) —Z(&Ai(?Xc)g). (39)
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This leads to Eq(26) as promised in the previous subsec- In the Landau gauge, the coupled set of Dyson-Schwinger
tion. equations is solved by pure power laws for the ghost and
These Slavnov-Taylor identities indicate that the Landawgluon dressing functions. Such solutions are determined ana-
gauge limitA—0 is smooth. Based on Eq&7) and(39), lytically by plugging a power-lawAnsatzin the equations
one may anticipate that an infrared masslesslike longitudina®nd matching appropriate powers on the left- and right-hand
part of the gluon propagator leads for sufficiently small val-sides. Once several power solutions have been found, the

ues of the gauge parameterto the same infrared enhance- fémaining task is to single out the one matching the numeri-
ment of ghosts as observed in the Landau gauge. cal solution of the renormalized equation. In the Landau

gauge, it has been shown that indeed only one of the power
solutions found in Refd.7,8] is the correct infrared limit of
the renormalized solutiof®] by solving the equations nu-
merically for all momenta. In the following, we will investi-

In this section, we will analyze the behavior of the two- gate whether there are power solutions at all using bare ver-
point functions at small momenfz. We will employ a trun-  tices for general gauge parameteand\.
cation scheme that successfully has been applied in the case Now we employ the power-lavAnsatzfor the dressing
of the Landau gaugg7—9] and explore its applicability to functions,
general gauges. -

An interesting result of the investigations in the Landau G(Xx)=Bx’, Z(x)=Ax", L(x)=Cx", (40
gauge is the observation that there is no qualitative differyherex=p? has been used. Together with the expressions
ence of the solutions found with bare vertices or with verti-for the bare vertices given in Appendix B, we plug the power
ces dressed by the use of Slavnov-Taylor identities. This hagws into the ghost and the gluon equation. The formulas for
not only been found in truncations using angular approximathe various integrals are given in Appendix C. The straight-
tions [4,5] for the integrals, but has been confirmed recentlyforward but tedious algebra is done with the help of the
for a range of possible vertex dressings in a truncatioryigebraic manipulation prograrorm [40]. In Ref.[8] it has
scheme without any angglar approximatigfs Th_e reason  peen shown that the renormalization functighsandZ5 do
for this some_whgt surprising result has been aytnbuted to thﬁot play a role in the determination of possible power solu-
nonrenormahzfuon of the ghost-gluon vertex in the I“"mdautions of the equations in the infrared region of momentum.
gauge, that isZ;=1. It seems as if the violation of gauge Fyrthermore, the tadpoles just give constant contributions to
invariance using a bare vertex is not that severe in the Lanhe respective propagators which vanish in the process of
dau gauge such that the resulting equations still provideenormalization. Thus we safely omit them in the present
meaningful results. In the following, we will explore to what investigation.
extent such a simple truncation idea is applicable in other Eqr the most general gauges# 0 and\#0, we obtain
gauges Wheraila»é 1. the following structure:

IIl. INFRARED ANALYSIS WITH BARE VERTICES
FOR ARBITRARY GAUGE PARAMETERS

B~ X—ﬁ: X(Hﬁ(U /)_tzli_ress+ Xp+ﬁ( U /)Eress+ Xaﬁ(U /)sun+ X0+33(U /)?_quint_f_ xPT 3/3( U /)iquint’ (41)
AT X T=XER(V )OS X2 (V) XAV R X (V)L X3 (V)R P (VTR X 2V R
+ XV X (V)RR 3T (VORI 2OV T xR (VOSIT x(V ORI, (42)
(CN) 71X P= - xPP(W)IOSL X2 (W) F%+ X7 HP (W) S+ X3 (W) 35337 P (W) 35T+ 2(W) 3T

+ X3p(W/ )ilﬂrﬂ_i_ X40’(WI )_Sl_grL_JI_I_rI]t_l_ X3U+p(W/ )'Sl'gI'L'jl'IEt_F X20+2p(Wr )'Sl'grllj_iCt+ XU+3p(W/ )_Sl_(ELIJ_ILnt (43)

Here the primed quantities are momentum-independent funcervation cannot hold with three longitudinal gluons in the
tions of B, o, andp; cf. Fig. 2, where the corresponding three-gluon vertex.

unprimed, momentum-dependent quantities have been intro- For the following argument, we focus on one particular
duced. The pattern of the equation is such that each primegpntribution on each right-hand side of the equations:
factor on the right-hand side is accompanied by the squared

momentunx to the power of the dressing function content of B Ix A=x3f(U")sU"+ ..., (44)
the respective diagram. In Appendix D, we demonstrate how

such a pattern emerges, for example, from the sunset dia- A~ Lx— o= xdo(yrysauint (45)
gram in the ghost equationy(*"". Note that the contribu- rrT ’

tions (W’)9}"® and W')$%" " are zero and therefore missing

in the longitudinal gluon equatiof43) as momentum con- (CN) "X P=x3P (WP + - (46)
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The coefficients 0')s"", (V/)$941 and (W')SU" are  nal gluon dressing, this contradiction can be resolved in the
nonzero and explicitly given in Appendix [First, it is now  following way: Equation(45) for the transversal gluon dress-
easy to see from Eq$44), (45), and(46) that neither8 nor  ing function does not change in structure, therefore0.

o nor p can be negative. If one of these powers would beFurthermore, we havp>0 from Eq. (46). Then we have
negative, the limix— 0 would lead to a vanishing left-hand —28=o and/or—28=p in the ghost equatio48) and 8
side of the respective equation whereas the right-hand side 0, i.e., a diverging ghost dressing function in the infrared.
singular in this limit. This is a contradiction as the power onFrom this it follows immediately that the ghost loop is the
the left-hand side of the equation should match the leadingominant contribution in both the equations for the transver-
power on the right-hand sid&econdif one of B, o, or p sal and longitudinal gluon dressing function. From these two
would be positive, then the diverging left-hand side of theequations we therefore infer

respective equation would require a diverging counterpart on

the right-hanq side. However, all powers on the right-hand —B=0l2=pl2=k, (49)
side are positive as we already concluded at- or p are

not negative and there are no minus signs in any powers on, . , , ) !

the right- hand sides, cf. Eqet1), (42), and(43). Therefore, yvhlch is cor!3|s_tent with the ghost equathn. We thus find an
for positive powers all terms on the right-hand side vanish ijnfrared vanishing gluon dressing and a singular ghost dress-
the limit x— 0, which leads again to a contradiction. The last!Nd function for all values of the gauge paramekerThis
possibility is theng=o=p=0, but then one gets perturba- result is identical to the_ one in the Landau gauge 9.

tive logarithms on the right-hand side of the equation which10WeVer, a word of caution is in order. In the Landau gauge

do not match the constant on the left-hand side. Thus in thi'e"e are indication4,41] that the general resu(é9) does

all-bare-vertex truncation there is no power solution for gen-nOt change when the vertices are dressed. This has been con-

eral values of the gauge paramet&rs0 anda+#0. Based firmed recently for a range of possible_ vertex dress[n&jslt
on the considerations on the Slavnov-Taylor identities giverlS &1 @S Yet open question whether this is trué\fér0 in the

in the previous section, we therefore arrive at the conclusioﬁ"’me way. " dth i . ith
that this truncation is insufficient to determine the infrared aving addressed the case of linear covariant gauges wit

behavior of the propagators even qualitatively. a=0, we now turn. to the other interesting limit, that Is,
There are two limits for the gauge parameterandx in ~ — 0 While a#0. Itis easy to see that the-dependence of
which the situation changes. The first oneais 0, that is, f[he Lag_ranglar(l) can be el|m|_nated in this case by partial
ordinary linear covariant gauges. Due to the correspondiante?rat'or? using thghcgnstra|mA=0. hHowever,. on the
Slavnov-Taylor identity, the longitudinal part of the gluon Vel of the DSEs with bare vertices there remain spurious
propagator remains undressedp?)=1 [3]. However, re- a-dependent terms on the right-hand side of the gluon equa-
placing dressed vertices by bare ones in the infrared, thilon: In the next section we will investigate the dependence
identity might be violatedwhich does not happen in pertur- ©f the Landau gauge solution on these spuriaugrms.
bation theory, of courge We therefore employ the general
expressiorL (p?) = C(p?)* for the longitudinal gluon dress- IV. SOLUTIONS IN THE LANDAU GAUGE
ing function and explore whether the limit—0 can be _ _ _
taken with bare vertices. In the ghost equation, the squint as To assess the influence of the spuriausterms in the
well as the sunset diagram disappear and we are left with theandau gauge, we use the truncation scheme developed in
one-loop contributiond)9"¢S and UY"®sS. The explicit ex-  [9]. There the two-loop diagrams in the gluon equation have
pression for the ghost equation is given (af. Appendix D bee_n neglected as they are subleading in the perturb_atlve
regime and ghost loop dominance has been assumed in the
B~ ix A=ydressy ydress (47)  infrared. In order to obtain the correct one-loop behavior of
the ghost and gluon dressing functions, the gluon loop has
been modified by replacing the renormalization cons#nt

2N 7 _
=y (B+0) 9°N:Z1AB S by a momentum-dependent functidf,
1672 2(Bto)(—1+pB+o0)
r2+pra+olr2-p-—o) Zy(L,s)— 24(x,y,z;s,L)
I(1-p)I'(2-=0)l'(3+B+0) G(y)("2769) G(z)(-2-69)
= - (1+36) (1+36) ° (50)
(mp)gZchlec p+1/2 Z(y) Z(2)
—X
1672 B

Here L=A? denotes a cutoff and=u? a renormalization
L'2+p)r'(1+p)l'(—B~p) (48) scale in units of squared momenta. The momentunp? is
H—=pr2—-pr@E+p+p)’ the one flowing into the loopy=q? is the loop momentum
over which it is integrated, and:=k?=(p—q)2. Further-
For p—0, we run into the same contradiction as explainedmore, the anomalous dimensiérof the ghost dressing func-
above for general values of the gauge parameteasd \ . tion has been used. The gluon equation is contracted with the
However, admitting the generation of(spurious longitudi-  general tensor
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O(py=s —¢PePr _1 _<X—y>2) E(”V 1

Plu,v(p)_ﬁ,uv g p2 . (51) K(Xiylz)_ 22( 4 +Z 2 4’ (54)
As a completely transversal gluon equation would be indeM( X,y,2)=— ((5 Da?—({-1)2a+{-2 +X_ £y_2
pendent of the parametér the use of the general projector 4 2 4x
provides an opportunity to test for violations of transversality 1 ¢y ¢z

due to the truncation. Fof#4, one has to take care of 22 , (55)
spurious quadratic divergencies that have to be subtracted in 2 2x 4x

the kernel of the gluon equation. 3 3
The coupled set of equations for the ghost and gluorb(x y Z):i(l X 12 19-¢ + 5_§y2+ éy )
dressing functions then read as follows: ' 8

1(x?> 15+¢ 17-¢ y?
1 d'q K(x,y,2) +—(—— X— y+i—
——=7,—0¢°N J ————G(y)Z(z), (52 z 4 4 X
G(X) 3 g c (277)4 Xy (Y) ( ) ( ) y
19-¢x 17 9 5-
_(_4_+_4“+ &y +Z(£+_§)
5. J d“q M(XyZ)G( 6@ 8 vy 4 4 x X 4y
=— = z
Z(X) 3t (2m* Xy Y ,{ 5
gt 40, (56)
NC d4q Q(Xryaz) . . . .
= 1y 2WZ(2)2(y.2). First we accomplish the infrared analysis. With E49)
(2m) y we employ theAnsatz
(53 Z(X)=AX2*, G(x)=Bx ¥ (57)
The kernels ordered with respect to powerszefp?=(k  in Egs.(52) and(53). After integration we match coefficients
—q)? have the form of equal powers on both side of the equations and obtain
1 (2+k)(1+«k) B (4k—2)(—1+«k) 59)

18 (3-2k)  ({—1)[4K%(a?—2a+1)+8ka(2—a)+3a(a—2)]+ k(10— 77)—6+3¢

The values ofk for different projectorsP(?) can be read off same as the one already calculatefdih For the other cases,
Fig. 3. The curve given by the fully drawn line represents thethe powerx changes from 0.5953 faf=1 to 0.5020 for{
term on the left-hand side of Ep8), whereas the other lines =3.9 in accordance with the infrared analysis. The ultravio-
depict the right-hand side for several values of the parametdet properties of the solutions are slightly disturbed compared
. Only the two{=1 solutions are manifestly independent to the casesr=0 anda=2. An analysis of the ultraviolet
of a, as pointed out ”ﬁ8:| The Spuriousl, dependence of the behavior done Similarly to the one in Ré@] reveals that the
(=14 values reported therein here implies that genérsb- @ term in the ghpst qup induces a spurious dependence of
lutions must necessarily show such andependence also, the anomalous dimensions on the paramgter
whenever{# 1. However, the bulk of solutions betwean
=0.5 and«=0.6 remains nearly unchanged wheris var- —26—({-1)a(2—a)
ied, whereas most of the solutions fee1 disappear. For Y= 24 (- Da2—a) '
the Brown-Pennington projectaf=4, no solution can be
found for the symmetric case,=1, in complete agreement
with the findings of Ref[8]. Indeed it has been show8] -9
that_only the smallgr 'solutions are those that connect to nu- o= 24+ ({-Da2—a) (59
merical results for finite momenta.

We now explore the impact of the spurioagerm on the
behavior of the solutions for all momemrtaWe have solved For generakr only the transverse projector removes the spu-
Egs. (52) and(53) numerically using the same technique asrious term in the ghost equation and leads to the correct
described in9]. The results can be seen in Fig. 4. As theone-loop scaling of the equations, that & —9/44 for the
dependence of the kernel of the ghost loopcomanishes in  ghost andy= —13/22 for the gluon dressing function for an
the case of the transverse projectps 1, this solution is the arbitrary number of colors and zero flavors.
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Faddeev Popov gauges: ¢=0,2 Ghost antighost symmetric gauge: o, =1

! 1
— Ghost eq. | : '.' — Ghost eq.
[ - Gluoneq. { =1 I R ‘
08k -= g}uon eq- C ig | 0.8 : "’ . Gluon eq: C=3 -
| Gluoneq. &= - i | — Gluoneq.{=3.9
— Gluoneq. {=4 -~/ -1 06 i |

0.4

02

FIG. 3. Here the graphical solution to E&8) is shown. The thick line represents the left hand side of(&8), whereas the other curves
depict the right-hand side for different values of the parameteihe left figure shows results fer=0 anda=2, whereas in the figure
on the righta=1. The ellipse marks the bulk of solutions between0.5 and«x= 0.6 for /=1, whereas the circles in the left figure show
the movement of the solution for the Brown-Pennington casé from k=1 to x=1.3.

V. CONCLUSION been able to evaluate the infrared behavior of the gluon and
ghost equations analytically.

We have studied the infrared behavior of the ghost and For all linear covariant gauges we find a similar result as
gluon propagators in general covariant gauges. These gaugesmpared to the one in the Landau gauge: an infrared-
allow us to interpolate via a second gauge parameter betweesuppressed gluon propagator and an infrared-enhanced ghost.
the linear-covariant ones of standard Faddeev-Popov theoM/hereas in the Landau gauge there are indications that this
and the ghost-antighost symmetric gauges. We derived thgeneric result is not changed when the vertices are dressed
corresponding generalized Dyson-Schwinger equations fdi8], it remains an open question whether this is the case in
the propagators which include the ones of linear-covariantinear covariant gauges in general. Away from linear covari-
gauges as the limit where the second gauge parameter vaant gauges, that is in the general caser0 and
ishes. Note that ghost-antighost symmetric gauges are pax=0, we do not find power solutions for the dressing func-
ticularly interesting as they allow an interpretation of thetions. However, we expect this to change with appropriate
antighost field being the antiparticle of the ghost which in-vertex dressings. Nevertheless, it remains to be emphasized
cludes also the possibility of a ghost-antighost condensatehat therefore also the occurrence of a ghost and/or gluon
Due to the emergence of a four-ghost interaction term in thenass is excluded in this specific truncation scheme within
Lagrangian for general values of gauge parameters, thgis class of gauges. A Dyson-Schwinger equation-based in-
Dyson-Schwinger equation of the ghost propagator displaygestigation of the related question of a ghost-antighost
a rich structure very similar to the one of the gluon equationvacuum condensate, or more generally, of an “on-shell’-
On the other hand, in the gluon equation we obtain the samBRS-invariant dimension 2 condensate, needs to take into
structure as in linear covariant gauges apart from the fact thaiccount the generalized Slavnov-Taylor identiti83) and
the gluon propagator acquires a nontrivial longitudinal part(39). The question arises whether an infrared masslesslike
which appears in turn in all diagrams. The gluon and ghostongitudinal part of the gluon propagator leads for all values
equations depend therefore on three dressing functions, o the gauge parameters to the same infrared enhancement of
for the ghost, one for the transverse part of the gluon propaghosts as observed in the Landau gauge. Work in this direc-
gator, and one for the longitudinal one, which are con-tion is in progress.
strained, however, by Slavnov-Taylor identities in an intri- A special case among all gauges considered here is the
cate way. Landau gauge. In the limit =0, the general Lagrangigt)

We then employed a truncation scheme for the Dysonbecomes independent of the second gauge parametaus
Schwinger equations that uses bare vertices in place of thge Landau gauge is also a special case of ghost-antighost
dressed ones. The success of this particular truncatiosymmetric gauges. Although the Lagrangian of the theory is
scheme in the Landau gauge has been attributed to the nojdependent of the gauge parameterur simple truncation
renormalization of the ghost-gluon vertex, thatds=1. We  scheme breaks this invariance and spuriausiependent
addressed the infrared behavior of the ghost and gluoterms arise in the ghost loop of the gluon Dyson-Schwinger
propagators for general gauges by employing powerAaw  equation. Examining the cage=1, we showed that the in-
saze for the respective dressing functions. We then havdluence of these spurious terms is very small. We determined
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solutions for the ghost and gluon dressing functions both
analytically in the infrared and numerically for finite mo-
menta and found solutions identical to the ones of Ref.
provided the gluon equation is projected onto its physical,
transversal components. We thus recovered the results of the
Landau gauge from a different direction in the two-
dimensional space of gauge parameters.
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APPENDIX A: DERIVATION OF THE
DYSON-SCHWINGER EQUATION FOR THE GHOST
PROPAGATOR

We start by transforming the Lagrangiéb) into a more
suitable form by partial integration, assuming the usual
boundary conditions of vanishing fields at infinity. In order to
keep notation on a readable level, we will suppress renormal-
ization constants in this appendix: The derivation of the
Dyson-Schwinger equation for the ghost propagator remains
formally unchanged by the rescalit§) and thus the appro-
priate renormalization constants can be regained straightfor-
wardly. We obtain

1 1
- _ 92 _ - _ b b
L=S AN —°6,,+| 1 )\)&May AS—gf*(a, ADALAL
gz
befcdepa pbpc pd naq2
+ o FPACCALAVALAL+ co%c?

a a\ N\ JR—
2facefbde~a~b~c~d
+21 2)ng fP%cc ctc

+i

o — . o J—
1—- 5) g fabcca&#(Achb) +i59 fabccaAfLaMcb.

(A1)

The partition function of the theory is given by

Z[J,0,0]= f D[Acc]

xex;){—f d4z£+J d*z(A232+ gc+co)
(A2)

with the sources], o and o of the gluon, antighost and
ghost fields, respectively. The action is given 8yJ,c,c]
fd*z £. The generating functional of connected Green’s
functions,W[ J, o, o], is defined as the logarithm of the par-
tition function. The functional Legendre transform bf is
the effective action
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_ _ . _ Now we use the relation@\4) and apply a further functional
I'[A,c,c]= —W[J,U,UHJ d*z(A%J%+oc+coa), derivative with respect to the soureé(y). We arrive at

(A3)

which is the generating functional of one-particle irreducible 5S _ _ _
vertex functions. The fields and sources can be written a®=| — —=—<"(y) +0%(2)c’(y) + 8(z—y) 8 | Z[3,0.,0]
functional derivatives of the respective generating function- 6c(2) (A7)

als in the following way:

with explicit color indices and space-time arguments. Setting

5“23 5_““=C oW —A the sources equal to zero we obtain the ghost Dyson-
b 7 5o 8, M Schwinger equation
s — o — ¢or 3 (Ad)
=0, —=¢g, —=J,. b -
C oA © —¢C =6(z—Y)b;p- A8
sc " <5c°(z) (y)> (Z=Y) S (A8)

The sign conventions have been chosen such that derivatives
with respect tac and o are left derivatives whereas the ones The derivative is easily calculated
with respect toc and o are right derivatives,

oS

6 o . o —
5(;5 :=|eft derivative, m :=right derivative. 5¢%(2)
(AS5)

A _
1- f) S QA9 2)cl (2)0(2)

=9%c%(2)+ ¢
2 2

+i

@ cde e d
Given that the functional integral is well-defined, the ! 2)gf Tl A D))
Dyson-Schwinger equation for the ghost propagator is de- o
rived from the observation that the integral of a total deriva- +i=gf°9A%(2)a,cd%(z). (A9)
tive vanishes provided the measure is invariant under field 2 . a
translations. We take the derivative with respect to the anti-
ghost field and obtain Whereas in the covariant formalism full and connedtede-
point functionsare the same, thieur-point correlationshave
to be decomposed into disconnected and connected parts. For

_ S _
Ozf D[Acc]é—_exp{ —f d4z£+f d*z(A%J%+ oc+ CU)) the four-ghost correlation function this results in
C

= J D[Acc] _SAce] (cP(y)cU(2)c(2)c%(2))
o =(c"(y)e2){c(D)e'(2))~ ("(y)c'(2)
o [ atac [ aanesirero) X(C(2)e%(2)) + (@)U DC! ()2 comn
6 6 o (A10)
0S =, ——=

0’ Sg oo _ Keeping i .

=\ ————= 40 7[00l (AB) eeping in mind the Grassmann nature of the ghost and
¢ antighost fields we then obtain

1- 3) %ngmffge{@(y)?‘(z)cf(z)cg(z»+<<€b<y)cg<z>><?’<z>cf<z)>

— (2 y) 8= YD) + 5 1- 5

(S @) (@@} + ( 1- %) 0 fe(cP(y) 3, AL (2)cH D)) + 5 9Ty AL(2)3,5(2)),
(A11)

where all correlations are connected Green'’s functions. We now use the relation
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Sy —x)8%P=

da™(y) f d4253b<y> 5c%(2)
Sa?(X) scd(z) 8a3(x)

f . 5T 5°W
“5c(2) 8cP(y) 502(x)80(2)

:f d*zZ[DP(z—y)] D& (x—2) (A12)

and multiply Eq.(A11) with —[D3%(x—2)] *=[(c%(2)c?(x))] L. We arrive at

[DF(x—y)] = d*5(x—y) 5~ %( 1- %) %ng“’effge J d*Z[DE(x—2)] H{(c(y)c (e (2)e%(2)

+(c"(y)e%(2)) (¢ (2)c'(2)) — (P(y)c'(2)) <F‘(z>c9<z>>}—i(1— %)gf“‘e

% | dtaDE 21 o, AL D@ - 5t [ dADEx-2)] P AL(2)0,0°2).
(A13)

Before we decompose the connected Green'’s functions into one-patrticle irreducible ones, we have to take care of the space-
time derivatives. Noting that

, W . 5°W
e e T
6d,(2)0"(2) 6d, (U)o (u)
f d*[uv]d,[ s(u—2)]8( ) oW (A14)
=— uv u—-2)]8(u—v)———F—
g 8J5(v)of(u)
with the abbreviatio*ud*y=: d*[uv], and
1) oW

& oW —fd“[u:;]é(u—z)é(u—v)

83%(2) “o%2) 53;(u)a“ad(u)

——fd“[u 14[ 8(u—2z) S(u— )]52—W (A15)
- 0% Y 5J;(v)a'd(u)

we can replace the derivative terms by the bare ghost-gluon vertex defined in Appendix B. The tadpole term can be treated in
the following way:
f d*Z[ DE(x—2)] e 9%(c(y)c(2) (Y (2)c!(2)) —(cP(y)c'(2))(cX(2)c%(2))}
=ZJ d*Z[ DE(x—2)]~ e 19(cP(y)c9(2))(c (2)c!(2))}

=2f d[zuw][D&(x—2)] *8(z—u)s(u—v)feef 198D (z—y)D L (v —u)

=2f d*[uv]8(x—y)8(z—u)S(u—v)fPeeffaep ¥y, —y). (A16)
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Plugging the expressions for the ghost-gluon loop and the one for the tadpole if&1Byand using the expression for the
bare four-ghost vertex given in Appendix B, we obtain

[D2P(x—y)]~ 1= 25(x—y) 62— f d*Tup TP x,u,0,y) D (v — u) + %( 1- %) %g2f°deffge
Xf d*[zw]8(z—u) S(u—v)[DE(x—2)] X cP(y)cd(2)c’ (u)cd(v))
- f d*[zw T °(z,u,0) [ DE(x—2) ]~ X (y) A (v)c%(W). (A17)
To decompose the connected Green’s functions into one-particle irreducible ones, we use the relations

(AS(v)cP(y)cd(u))= j d*212,25]D8"(v — ) DAY — 2,)T'"(24,23,2,) DL (U —23), (A18)

<EB(Y)FJ(Z)Cf(U)Cg(U)>: J d4[U1U2U3U4U5U6]{Dii(U1_ Ug)DE(u—ug) " Uy, Ug,us) DR (Ug—Y)

xDE(v— UZ)F;eLji(Ul U3,Up)DE (u3—2)} - f d*[uU,U3U,Us]

X{DE(u—uy)DP(us—y) X DL (v —ux) T} (U3, U5, Us,Up)DE (U3 —2)},  (AL9)

which have been derived in Appendix B.
Substituting these expressions into E417), we arrive at the final expression for the ghost Dyson-Schwinger equation in
coordinate space:

[D&(x—y)] t=[DP?P(x—y)] - f d*uv TP (x,u,0,y)DE (v —u)

1 .
- EJ d*[ZU U3UoUsUUs TSR 49y, 2,0, U) DS (U — ug) DE(u—ug) 5 Uy, X, Uus) DE (v — )

N . 1 .
XT3(uy,Uz,U) DE (Uus=2) — 5 J d[ZuUou3UU3U TR (y, 2,0, U)DE (U= Uy DE (v —Up)

XTI Uz, X, Uy, Up) DI (Ug—2) — f d“{zuwz,2,25]T Py, u,0) DS (v —2)T}"(21,25,X) DE (U~ 25),

(A20)

where an additional minus sign arises from the interchange of the color irffdicelg in the bare four-ghost vertices and from
the interchange of andi in the ghost-gluon vertex.
After performing a Fourier transformation we obtain the respective expression in momentum space

2
c

1 g
4.1 (0) - 4 (0) —
jd qr4ghDG(q)+( > )2 (ZW)SJ d*[9:02113ghD .,(P—01)D(ql)

g2
(2m)*

[De(p)] *=[DP(p)] 1+ (—Ny)

4

1
XT,(p,61)Da(G2)T (—P+01+02,02)De(P— i —0d2) — (N5 f d*(a:021{ghDo(a)

(2m)®

2

XDg(P— 01— 02)T4gn(P.01,02)Da(d2) + (= No) f d*qr'®(p,q)D,,(p—q) T',(q,p)Ds(q),

(2m)*

(A21)
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where the color traces have been carried out and the reduced 0, a d c
vertices defined in Appendix B have been used. kY ks S
k T k4\\\\ I’Il
APPENDIX B: DEFINITIONS AND DECOMPOSITIONS o &
q Pl SN
1. Ghost and gluon propagators o p\\\ 'lkl » 2
The full ghost and gluon propagators in coordinate space b ¢ a/ \b
are defined to be
FIG. 5. Momentum routing for the tree level ghost-gluon and
— oW four-ghost vertices.
)y = —5——=—=D¥(x-y), (B
< ) So(y)dai(x)  ©
the tree level ghost gluon vertel“x;bC is easily derived,
(Aa(X)Ab(y)>=L=Dab(X—y)- (B2) 52
pem s0(y) 823 (x) M )by v 7) = “Sgng!
a SA(x) 5c°(y) 5¢°(2)

The bare propagators in coordinate space can be easily de-

rived from the quadratic part of the action,

1 1 _
Squad:f d“x’[EAj‘L{—aZéﬂﬁ 1=+ ]9udy A§+Caazca]
(B3)
and are given by
(DO B(x—y)]im W _sabas ) (ga)
’ 5C(X)C(y) ’
8*Squad
D)0 (x—y)] 1= ——12C
oA (X)AL(Y)
— o a2s | 1- 20,9, o0x
B e )\ MmooV (X y)i

(BS)

with the gauge parametex. After Fourier transformation

one obtains the corresponding expressions in momentum

space:
[DE(p)] = —5"p’ (B6)
[D(O)ab( )]—1_5ab S — 1_£ pMpV 2 (B?)

)23 p - mv N p2 p-.

2. Ghost-gluon vertex
From the ghost gluon part of the action

I R A\ cabc, oy AC D

Sghgi= | A" —i 1—5 gf®%(d*c)A,c
+i E fabc_aAc gH b BS
i5gf**CAL I e (B8)

- —gfabc[i(l— g)[aza“(z—y)]a“(z—x)

i %a;[a“(z—y) sz—x1|. (B9)

Using the momentum conventions of Fig. 5, the Fourier-
transformed bare ghost-gluon vertex reads

0)ab _ b i(k- y—p-
L (k,p,a) = f d*IxyZII5 (xy, )€t xrayp2
=gf**(2m)*s*(k+q-p)

o
1— —

X 2

; (B10)

o
O.+ > Pu

where the abbreviatiod*xd*yd*z=: d*[xyz] has been in-
troduced. Note the symmetry of the vertex in the ghost mo-
mentap, andq, if a=1. For convenience we define a
reduced vertex functioﬂﬁ))(p,q) by

L%k, p,a) =g f*(2m)* 6% (k+q—p)T [ P(p.q)

(84
q.+ Ep# . (B11)

rf,f”(p,q){(l—%

The full one-particle irreducible ghost gluon vertex in coor-
dinate space is given by

T
833(x) 5¢P(y) 6c(z)

ra*%(x,y,z)= (B12)

3. Four-ghost vertex

The four-ghost verteX'30° is derived from the four-
ghost part of the action,
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a a\ N — a a
S4gh: j d4xl[§(l_ E) Eg2]cace]cbdeCaEbcccd , 1"5‘%): E( 1— E) . (B16)
(B13)

. The full four-ghost vertex in coordinate space is formally
which leads to given by
5484gh

— oT
5c3(x) 8¢P(y) c¢(z) 5cd(w) rakedxy,z)=

8¢3(x) 8cP(y) 8¢%(z) bcd(y) |

Fg%)ade(X,y,Z,W) —

(B17)

— E( 1— E )\ngabedeeb‘“(x—y)
2 2 4. Decomposition of connected ghost-gluon Green'’s function
X 8*y—2z)84z—w). (B14) With the help of the matrix relation
Again using the momentum conventions of Fig. 5, one ob- 5)(71:_ ,12 1 (B18)
tains for the Fourier-transformed bare four-ghost vertex o¢ X 5¢X '
Fg%)abcd(kl,kz,k3’k4): 9 >4gh and the identity
5c3(x) 8c(y) 5¢8(z) Sc(w) - o
X saP(y) ocd(z)
a a S(y—x) 6% =f d“z—_d —
_ E( 1— > )\ngabefcde(zﬂ_)4 6c%(z) 60?(x)
2 2
X 54k +kp—ks—k,).  (B1S) :f gi O _ow
5c9(z) 8cP(y) So?(x) 5a¥(z)
We define a reduced vertex functidiy) by (B19)

F(O)abcd Kk ,k ,k ,k ): 2fabefcde 2,”.)4
s  (koke ke k=0 ( we decompose the connected ghost-gluon correlation func-

X 8%(Ky+ko—ks—kg) ') tion, (A% (x)cP(y)c%(2)), in the following way:
(ALO0CP(y)e%(2) = ow

835(x) 80°(y) 50°(2)
s 8T ]1
823(x) | 5cP(y) 5cc(2)

f , A%y 5 8T ]‘1
=|d up a d b

83, (x) 8A,(uy) | éc (y)éc(z)
5°W 5°W 5°r 5°W

:f d*[u;u,us] e =
832(x)83%(uy) 80P(y)Sa®(uy) SAY(U1) 8c(u,) et (ug) o' (ug) 50°(2)

= f d*[u3u,U3]D3S(x—ug) D& (U — YT (uy Uy, uz) D (U3 —2). (B20)

Here we used the abbreviatiatf[ u,u,uz]:=d*u; d*u, d*u; and the definitions of the gluon propaga®y,,, the ghost
propagatoD, and the ghost-gluon vertdx, given in previous subsections.

5. Decomposition of connected four-ghost Green'’s function

Furthermore, we need the decomposition of the four-ghost correlation function into one-particle irreducible parts. We start
at a stage where the sources are still present and set them to zero at the end of the derivation. We first give the decomposition
of the connected ghost-antighost-ghost three-point function
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W
Sa°(y) 8°(z) Sad(w)

(cP(y)cs(z)c(w)) =
5T -t
50°(2) Sad(w)

- )
sa°(y)

5T
50%(z) s (w)

6Ae u 5
——f du, _V( J
So(y) SAT(uy)

5°W 5°W 8T 5°W
8aP(y) 838(uy) 80°(2) 80 (Uy) SAS(Up) ST (Uy) 8c9(us) Sad(us) Sod(w)

= f d*[uqu,us] (B2

Then we decompose the connected four-ghost Green'’s function:

5*wW
502(X) 5aP(y) 50°(z) S (w)

(cA(x)cP(y)c(z)cd(w)) =

5°W 5°W 8°r 5°W
80°(y) 838 (uy) 80°(2) 80 (uy) A% (up)8c(uy) 8c%(us) S09(ugz) Sod(w)

s
 50?(x)

J d*[uyu,us]
(B22)

Carrying out the remaining derivative gives four terms. The two terms where the derivative acts on the second and on the last
propagator vanish, because the te?/[ 55°(y) 6J%(u;)] vanishes when the sources are set to zero. The contribution where

the derivative acts on the first propagator can be treated usin@B20). In the expression with the derivative acting on the
vertex we use

B 5°W 5T
SaP(y) 88 (uy) S0?(x) 5AS(uy) 8c'(u,) 5c¥(us)
B 5T
 8a?(x) aP(y) 8¢t (u,) 5c9(us)
_ f 4 5°W 5T
* 50%(x)a%(Ug) 5¢%(Us) S0(y) Sc'(Uz) 5c9(ug)
. 5°W 5°W 5T
:f d*Tu,us] aly) € b h e s-h f e
30%(x)®(uy) 6a°(y)do'(Us) 6C(uy)SC"(Us)C'(Uz) 5¢9(us3)
=— J d*{usus] oW oW oT (B23)
T 50%(x) 0% (Ug) 80 (Us) SP(y) 59(usz) SN (Us) Sc(Uy) SC'(Up)
Collecting all this together we arrive at
(c(x)cP(y)c(z)cd(w)) = f d*[U;U,U3U4UsUG] W W o°r
g HRSTRSR I 502 (U 891 (ua) 60™(x) 87(us) AT (ug) 6C(u5) ST Ug)
" 5W 5W 5°r 5°W
80"(Ug) 3aP(y) 35°(2) 807 (uy) SAS(Uy)SC'(Uy) 5CT(Ug) dol(uz) dord(w)
_f U] W 5°W 5°W
FEEE 50 (x)0%(Ug) 50" (us) Sa(y) 80%(2) 50 (uy)
5T 5°W
(B24)

X— — — .
5c9(ug) 8¢ (us) 5c(uy) et (uy) do9(uz) Sod(w)
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Interchanging some Grassmann fields in the correlations and using the definitions for the propagators and vertices given in the
previous subsections, we arrive at

(cP(y)c(w)ci(x)c(z)) = f d*[U3U,UzU4UsUs 1{D S (Us— us) DE(x—ug) T, (Uy, U, Us) DR (Ug— ) DE(z— uy)
X (uy,ug,up) D (uz—w)}+ f d*[u;UoU3U,4Us 1{DE(X— Ug) DR (Us—y)
XD (z—up)T 435 (us,uz,uz,u2) D& (Ug—w)}, (B25)

which is the decomposition of the four-ghost correlation used in Appendix A.

APPENDIX C: TENSOR INTEGRALS

The explicit expression for the scalar bubble intedyalefined in Eq(C1), can be easily evaluated in Euclidean space-time
using the Feynman parametrization. With the squared momenf, y=q?, andz=(p—q)?, the result is given by

1
I(a,b,p):= f d“qyazb (CY)

T'(2—a)l(2—b)T(a+b—2)

2X27a7b
T'(a)T(b)[(4—a—b)

(C2

The corresponding tensor integrals can be reduced to scalar integrals by extracting combinations of mgraedtahe
symmetric tensop,,,, according to the symmetry properties of the integrand:

q
Jﬂ(a,b,p)==f d“qya’z‘b:Jl(a,b,p)pﬂ, (C3
2 9,0,
K,uv(albvp):z d qyaZb :Kl(alblp)pupy+ Kz(a,b,p)X(sl“,, (C4)
. qﬂqup
;LVp(a b p) = d 1(a b p)pﬂpvpp+L2(a b p)x(pM5Vp+pV5p;L+pp ,u,V) (C5)
4,.9.9,49
M,U“VPU'(alblp)::J‘ d4q ’uyaz:))

=M l(a b p)p,up pppu'+ Mz(a,b,p)x( 5,uvppp(r+ 6;1,ppvpu'+ 5,uzfppp,u+ 6Vpp,u,pu'+ 5V()'ppp,u+ 5pa'p,u,pv)
+M3(a,0,0)X(8,1, 855+ 8,y st 85 0p)- (C6)

unv©po

The scalar integrals in these expressions are calculated by contracting them with appropriate tensors, writing all scalar products
in terms of squared momenka y, andz and applying Eq(C2). One arrives at
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,1'(3—a)l'(2—b) I'(a+b—2)

—a-b
F@rorG-ab % = ©

1= 7

r(4-ar@-br@+b-2) ,
2 I'(a)l'(b)I'(6—a—Dh) x? , (C8)

Klz aa

_T(3-a)[(3-b)[(a+b-2)
T(a)T(b)T(6—a—b)
1
“2(—3t1arb)”

2= 1T
2ac, (€9

,T(5—ar(2-b)l(a+tb-2) ,
T(@I(b)I(7-a—b) ’

,T(4-a)(3-b)T'(a+b-2)
F@I'(b)I'(7—a—Db)

1
X2(—3rath)

2= T

2rash (C1D

,T(6-a)'(2-b)I'(a+b-2)
T(a)'(b)[(8—a—b)

2—a-b

(C12

|V|1=7T

,I'(5—a)l'(3—b)I'(a+b—2)
I'a)I'(b)I'(8—a—h)

X 1 Xzfafb
2(—-3+a+h) ’

M2:’7T

(C13

_T(4-a)[(4-b)[(a+b—2)
T(a)T(b)[(8—a—b)

1
“A(—3tarb)(—4+arb)

M3:’7T

2—a—b

X

(C19

APPENDIX D: EXPRESSIONS FOR SOME DIAGRAMS IN
THE BARE VERTEX APPROXIMATION

PHYSICAL REVIEW B8, 045003 (2003

-D-. k
&, ~\ —
e I g
a*-e e

FIG. 6. Momentum routing for the sunset and for the dressing
diagram in the ghost equation.

We first evaluate the sunset diagram in the ghost equation
given diagrammatically in Fig. 6. With the bare four-ghost
vertex given in Eq.(B16) and the abbreviations for the
squared momenta x=p?, y1=(d1)% y,=(d2)% z=(p
—q,)?, andz,=(p—0;—q,)? the sunset diagram reads

sun_ N§9424 E(l—g))\ ZJ d'q B(y1)”
202m8l21" 2 boxy
B2 B d B
y f i, B2 @) o9
Y2Z;

The factor X in the first integral stems from the left-hand
side of the ghost equation. We now integrate the inner loop
with the help of formulaC2) and obtain

NZg*z,B° a( a) 2121+ B)(—2B)
sun__*¥ % | 1— —|\
51275 |2 2/ T?2(1-pB)I'(2+2B)
(yn)*
X f d*q; . (z1)%P, (D3)

wherez; is the total squared momentum flowing through the
integrated loop. The second integration is done in the same
way. We arrive at

sun_yos Ne9 2B’ g(l_g))\ 31+ HI(-36-1)
51274 |2 2 I'3(1-pB)Ir(3+3p8)
::XSﬂ(U,)Sun. (D4)

As each integration step eats up the two squared momenta in

In this appendix we give explicitly the expressions for the denominators of the integral kernels, only powers tf
some diagrams needed for our investigation in the main bodyhe anomalous dimensions of the dressing functions in the

of the paper. All algebraic manipulations have been don(poop (here 3 from three ghost propagatgrsurvive. This

using the progranForm [40]. Our Ansdze for the small
momentum behavior of the ghost dressing functi®nthe
transversal gluon dressing functiah and the longitudinal

gluon dressing functioh are the power laws
G(x)=Bx?,Z(x)=Ax?,L(x)=Cx", (D1)

where we have used the abbreviation p?.

mechanism works in the same way for all diagrams and ex-
plains the pattern in Eqg41), (42), and (43) in the main
body of the paper.

Next we evaluate the two contributions in the gluon equa-
tion needed for the argument below Ed6). The explicit
expressions for the kernels of two-loop gluon diagrams are
rather lengthy but the calculation is done along the same
lines as in the ghost sunset diagram above. Therefore, we just
give the final results,
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Vit xS e 2T NZ A" grosn_ Ne 22 f “qq, ke p, BYCZ (D7)
4096r* (2m)* roz2 Xy
" I'(—1-40)(1/2—0)T(30)T%(1+ o) - Ncg'zzl)\Bcf , q,
[(4—30)T2(2— o)[(3/2— )T (4+ 40) (2m)* | Puyi-p2—5
X2747(—1+30)(10+ 0— 6602+ 630°) PP, G0, 1 P, 4,
X (5+ 430+ 4702) X yloBz2me yBz2me X yBZ2e)”
=XV 394 09 9
where again the extra factorxistems from the left-hand
aN27 3 3 _ side of the ghost DSE. At this stage of the calculation it is
= 359 NeZ4C 1 FA+9r(1-39 A3 not clear whether there are infrared singularities in the limit
1536 (1+39) I'3(2—-8)I'(3+30) p—0. We employ the tensor integrals given in Appendix C,
usexI'(x)=T'(1+x), and obtain
=xP(WRT. (D6) ~
gress_ NeGZINBC . T'(2+B)[(p)I'(-B~p)
Finally we calculate that part in the dressing diagram of - 1672 Ir'—p)re-plr2+p+p)
the ghost equation which contains the longitudinal part of the )
gluon propagator for the special cage-0,2. These are the % p-+pl2 (DY)
linear covariant gauges whefe(x)=1 by virtue of the B2+ B+p)’

Slavnov-Taylor identity. Replacing dressed vertices with
bare ones, however, violates this identity. We therefore staff) the limit p—0, this expression is infrared-finite, as
with the general expressioh(x)=Cx’ and investigate lim,_ol'(p)p=1. We then obtain

whether the limitp— 0 can be performed consistently. With

the momentum assignments=p?, y=q?, and z=k?=(p ydress_ _ Ncgzzl)‘chg 1 (D10)
—q)? the longitudinal part of the diagram is given by - 1672 2B(2+p)"
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