
PUBLISHED VERSION  

 
 
 

Alkofer, Reinhard; Fischer, Christian S.; Reinhardt, Hugo; von Smekal, Lorenz Johann 
Maria  
Infrared behavior of gluons and ghosts in ghost-antighost symmetric gauges Physical 
Review D, 2003; 68(4):045003 

 

©2003 American Physical Society 

 

http://link.aps.org/doi/10.1103/PhysRevD.68.045003  

 

  
   

   
 

http://link.aps.org/doi/10.1103/PhysRevD.62.093023  
 
  
 

 
    
 

 
 

 
 

 

 
 
 

  

 
 
 

 
http://hdl.handle.net/2440/34491 

 
 

 

PERMISSIONS 

http://publish.aps.org/authors/transfer-of-copyright-agreement 

 

 

“The author(s), and in the case of a Work Made For Hire, as defined in the U.S. 
Copyright Act, 17 U.S.C. 

§101, the employer named [below], shall have the following rights (the “Author Rights”): 

[...] 

3. The right to use all or part of the Article, including the APS-prepared version without 
revision or modification, on the author(s)’ web home page or employer’s website and to 
make copies of all or part of the Article, including the APS-prepared version without 
revision or modification, for the author(s)’ and/or the employer’s use for educational or 
research purposes.” 

 

 

 

20th May 2013 

 

http://hdl.handle.net/2440/34491�
http://link.aps.org/doi/10.1103/PhysRevD.68.045003�
http://link.aps.org/doi/10.1103/PhysRevD.62.093023�
http://hdl.handle.net/2440/34491�
http://publish.aps.org/authors/transfer-of-copyright-agreement�


PHYSICAL REVIEW D 68, 045003 ~2003!
Infrared behavior of gluons and ghosts in ghost-antighost symmetric gauges
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To investigate the possibility of a ghost-antighost condensate, the coupled Dyson-Schwinger equations for
the gluon and ghost propagators in Yang-Mills theories are derived in general covariant gauges, including
ghost-antighost symmetric gauges. The infrared behavior of these two-point functions is studied in a bare-
vertex truncation scheme which has proven to be successful in the Landau gauge. In all linear covariant gauges
the same infrared behavior as in the Landau gauge is found: The gluon propagator is infrared-suppressed
whereas the ghost propagator is infrared-enhanced. This infrared singular behavior provides an indication
against a ghost-antighost condensate. In the ghost-antighost symmetric gauges we find that the infrared behav-
ior of the gluon and ghost propagators cannot be determined when replacing all dressed vertices by bare ones.
The question of a BRS invariant dimension-2 condensate remains to be further studied.
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I. INTRODUCTION

A large body of experimental data supports the gene
belief that quantum chromodynamics~QCD! is the correct
theory of strong interactions. Nevertheless we are left w
the task of understanding the physics of hadrons, and he
in particular the mechanisms of confinement and sponta
ous breaking of chiral symmetry. Gaining such insight
quires reliable nonperturbative treatments of QCD. Here
Monte Carlo lattice calculations provide a rigorous nonp
turbative approach to QCD. They have the advantage of f
respecting gauge invariance independently of the size of
lattice used. On the other hand, the extraction of the c
tinuum values of physical observables from the lattice d
requires a careful study of the scaling regime. The obser
scaling behavior, however, will be in general contamina
by finite size effects. With respect to studies of the confi
ment mechanisms this is problematic: As infrared singul
ties are expected to occur in QCD there is a definite need
a continuum-based nonperturbative approach.

To this end we note that the Schwinger-Dyson equati
of QCD can address directly the infrared region. They p
vide genuine nonperturbative information and are at
same time fully formulated in the continuum theory. Such
approach is, however, less rigorous than lattice calculat
in the sense that truncations of the tower of coupled eq
tions are necessary in practical calculations. Justifications
such truncations can be given on the basis of general p
ciples such as e.g., a restriction to the first Gribov region,
Ref. @1# and references therein. Nevertheless, the validity
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the employed truncation is finally judged by comparing
results with either the results of Monte Carlo calculations
experiments. The latter is easily possible as the Schwin
Dyson approach has been successfully applied to the des
tion of hadron phenomenology, see, e.g., the recent revi
Refs. @2,3# and references therein. Furthermore, despite
cent progress by improved lattice algorithms, and despite
increasing computer time available for lattice calculatio
including dynamical fermions is exceedingly cumberso
and finite baryon densities are hardly accessible in reali
SU~3! lattice simulations. On the other hand, dynamical f
mions and finite baryon densities can be relatively ea
treated in the Schwinger-Dyson approach to QCD.

In recent years the fundamental Schwinger-Dyson eq
tions of SU~N! Yang-Mills theories have been solved expli
itly in certain approximations yielding gluon and gho
propagators@3–5,7–9#. In these calculations, carried out i
Landau gauge, vertex functions constructed from appropr
Slavnov-Taylor identities as well as bare vertices have b
employed. The results proved to be qualitatively simi
among each other and agree well with recent lattice calc
tions @10–14# for both the gluon and ghost propagator. T
common, though gauge dependent, result of both approa
is an infrared suppressed gluon propagator and an infra
enhanced ghost propagator. Furthermore, the inclusion of
namical quarks does not alter the infrared behavior of glu
and ghost propagators and leads to only slight modificati
for nonvanishing momenta for the number of light flavo
Nf<3 @15#. These results especially imply that the gho
take the role of the long-range correlations in the theo
Such a behavior is in accordance with the Gribov-Zwanzi
horizon condition, see, e.g., Ref.@7# and references therein
and the Kugo-Ojima confinement criterion, which in Land
gauge includes the statement that the ghost propag
should be more singular than a simple pole@16#.

The central assumption in the Kugo-Ojima confineme
scenario is the invariance of the measure of the functio
integral under Becchi-Rouet-Stora~BRS! transformations

rg
y.
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and the existence of a nilpotent BRS operator@17#. The most
general Lorentz invariant and globally gauge invariant L
grangian of dimension 4 that can be constructed under
assumption has been derived in Ref.@18#. In addition to the
structure appearing in ordinary linear covariant gauges,
Lagrangian contains a second gauge parameter which
trols the symmetry of the Lagrangian under ghost-antigh
interchange. Furthermore, a four-ghost interaction term
present. We will use this Lagrangian as the starting poin
our investigation.

Our main interest in this paper will be to explore th
situation in these general covariant gauges. Away from
Landau gauge limit the connection between the Kugo-Oji
confinement criterion and the infrared behavior of the gh
dressing function is far from obvious. In particular, the qu
tion might arise whether it is possible that the infrared dom
nant role of the ghost dressing function, seen in the Lan
gauge, is assumed by other degrees of freedom like the
gitudinal gluons in other covariant gauges. As a matter
fact, infrared dominance of longitudinal gluons is seen
stochastic quantization is used instead of the Faddeev-P
quantization@19#. Furthermore, calculations based on man
body techniques provide evidence that in Coulomb ga
~employing the usual Faddeev-Popov quantization! the
ghosts and the Coulomb gluons are both infrared-enhan
@20#. This latter picture for Coulomb gauge QCD obtains~at
least partial! support from lattice@21# and renormalization-
group calculations@22#. Care has, however, to be taken as t
Coulomb gauge limit is highly nontrivial, see, e.g.,@23#. On
the other hand, the benefit of the Coulomb gauge is obvio
The time-time component of the gluon propagator and
heavy quark potential fulfill a strictly valid inequality@22,24#
with the Coulomb string tension being several times lar
than the asymptotic one@25#. Even more important, quar
confinement directly results from infrared-enhanced C
lomb gluons, see, e.g., Refs.@26,27# and references therein
Instead of exploring the correlation functions in noncovari
gauges, in this paper we will study Green’s functions in c
variant albeit nonlinear gauges.

Ghost-antighost symmetric gauges are of special inte
when investigating the possibility of a BRS invariant co
densate of dimension 2 in QCD. Such condensates occu
the operator product expansion of the gluon propagator@28–
30#, bear some relation to the Gribov problem@31#, may
result in gluon mass generation@32#, and may be importan
for confinement in general@33,34#. Hereby it has been clari
fied recently that these condensates are highly nonl
@35,36# and that they are only BRS invariant after elimina
ing the Nakanishi-Lautrup field via its equation of motio
@37#. This kind of restricted BRS invariance has been cal
‘‘on-shell BRS invariance’’ and can be related to a resid
gauge symmetry after gauge fixing.

The solutions of the gluon and ghost Dyson-Schwin
equations in a Landau gauge provide a somewhat diffe
picture: Whereas the operator product expansion of the g
propagator requires such a dimension-2 condensate, its i
pretation with respect to a gluon mass is made impossible
the gluon propagator’s infrared behaviorD(p250)50 in-
stead ofD(p250)51/m2. Also the highly infrared singular
04500
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ghost propagator excludes a ghost mass and/or a gh
antighost condensate. Therefore the question arises whe
in general ghost-antighost symmetric gauges of the infra
behavior of the propagators can be interpreted in terms
gluon and ghost ‘‘masses.’’

This paper is organized as follows. In Sec. II we summ
rize some properties of the general Lagrangian given in R
@18# and outline the derivation of the coupled set of Dyso
Schwinger equations~DSEs! for the ghost and gluon propa
gators. As the Lagrangian contains a four-ghost interactio
rich structure in the ghost DSE emerges which closely
sembles the one already present in the gluon equation
ordinary linear covariant gauges. In Sec. III, we employ
truncation scheme that has proven to be successful in
Landau gauge and study in particular the infrared behavio
the ghost and gluon dressing functions for general value
the two gauge parameters. Furthermore, we show that in
ghost-antighost symmetric gauges the contributions of
genuine two-loop terms~generalized squint and sunset di
gram! in the gluon and the ghost DSEs must be prope
taken into account in the infrared. In the linear covaria
gauges no such terms are present in the ghost DSE,
self-consistent results can be obtained assuming the two-
terms in the gluon equation to be subleading in the infra
@42#. In general ghost-antighost symmetric gauges, on
other hand, the bare-vertex truncation is insufficient
clarify the infrared behavior of the gluon and ghost propa
tors. In Sec. IV we will provide numerical solutions for th
DSEs in the Landau gauge limit of the ghost-antighost sy
metric case of the Lagrangian and recover the soluti
found in @9# from a different direction in two-dimensiona
gauge parameter space. In the last section we give our
clusions. Technical details are deferred into four Appendix

II. THE DYSON-SCHWINGER EQUATION
FOR THE GHOST PROPAGATOR

A. Renormalized double BRS symmetry

The most general Lagrangian of dimension 4 that is L
entz invariant, globally gauge invariant, invariant und
BRS- and anti-BRS-transformations, Hermitian, and om
ting topological terms, is@18#

L5
1

4
Fmn

2 1
~]mAm!2

2l
1

a

2 S 12
a

2 D l

2
~ c̄3c!2

2 i
a

2
Dmc̄]mc2 i S 12

a

2 D ]mc̄Dmc. ~1!

The field strength tensor and the covariant derivative are
fined as

Fmn
a 5]mAn

a2]nAm
a 2g fabcAm

b An
c ,

Dm
ab5]mdab1g fabcAm

c , ~2!

and the abbreviation (c̄3c)a5g fabc c̄bcc is used. Note that
both ghost and antighost fields,c̄ and c, respectively, are
chosen to be Hermitian,c†5c and c̄†5 c̄. This is necessary
3-2
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INFRARED BEHAVIOR OF GLUONS AND GHOSTS IN . . . PHYSICAL REVIEW D68, 045003 ~2003!
to maintain the Hermiticity of the Lagrangian for all value
of the gauge parametersl and a, see, e.g.,@17# and refer-
ences therein. Furthermore, we work in Euclidean spa
time.

From the two gauge parameters of the Lagrangian,
first one,l, is the usual parameter of linear covariant gaug
whereas the second one,a, controls the symmetry propertie
of the ghost content. For the casesa50 and a52, one
recovers the usual Faddeev-Popov Lagrangian and its m
image, respectively, where the role of ghost and antigh
have been interchanged. For the valuea51, the Lagrangian
is completely symmetric in the ghost and antighost fields

In Ref. @18# it has been shown that the S matrix of th
theory is invariant under variation of the gauge parameterl
anda. Therefore, gauge invariance of physical observab
is ensured. One-loop calculations confirm in particular
independence of the first nontrivial coefficient of theb func-
tion from the gauge parameters.

Furthermore, the existence of a renormalized BRS alge
has been proven@18#, thus the theory given by Eq.~1! is
multiplicatively renormalizable. From one-loop calculation
one finds that the Faddeev-Popov values of the gauge pa
eters,a50 anda52, are fixed points under the renorma
ization procedure. The same is true for the ghost-antigh
symmetric casea51. The case of the Landau gauge,l
50, corresponds to a fixed point as well, because the c
straint ]mAm50 is not affected by a rescaling of the gluo
field.

To be specific, the renormalized BRS (sr) and anti-BRS
( s̄r) transformations are given by

srA52Z̃3Drc, s̄rA52Z̃3Drc̄,

src52Z̃1

1

2
~c3c!, s̄r c̄52Z̃1

1

2
~ c̄3 c̄!,

sr c̄5B2
a

2
Z̃1~ c̄3c!,

s̄rc52B2S 12
a

2 D Z̃1~ c̄3c!, ~3!

srB52
a

2
Z̃1~c3B!2

a

2 S 12
a

2 D1

2
Z̃1

2@~c3c!3 c̄#,

s̄rB52S 12
a

2 D Z̃1~ c̄3B!1
a

2 S 12
a

2 D1

2
Z̃1

2@~ c̄3 c̄!3c#.

Here Dr5]2Z3
1/2Zg(A3) is the covariant derivative in the

adjoint representation, with color and Lorentz indices s
pressed. Note that the Nakanishi-Lautrup auxiliary fieldB
can be eliminated from the BRS-transformations by using
equation of motion. The corresponding BRS-transformati
are called ‘‘on-shell.’’ Note furthermore that the applicatio
of the BRS-operatorsr( s̄r) on a field increases~decreases!
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the ghost number by11 (21), thus we can assign the valu
NFP511 (NFP521) to the~anti-!BRS-operator itself. The
BRS-operator and the anti-BRS-operator are nilpotent
related bysr s̄r1 s̄rsr50. These properties are, however, lo
when considering ‘‘on-shell’’ BRS-transformations.

The Maurer-Cartan conditions, in addition to the forms
src and s̄r c̄, for ghosts c and antighostsc̄ in a ghost-
antighost symmetric formulation, thereby require@18#

sr c̄1 s̄rc1Z̃1~ c̄3c!50. ~4!

The correspondence between the bare Lagrangian an
renormalized version including counterterms is given by
following rescaling transformations:

Am
a →AZ3Am

a , c̄acb→Z̃3c̄acb,

Ba→Ba/AZ3, g→Zgg,

a→Zaa, l→Zll, ~5!

where five independent renormalization consta
Z3 , Z̃3 , Zg , Za , and Zl have been introduced. Furthe
more, four additional renormalization constants are relate
these via Slavnov-Taylor identities,

Z15ZgZ3
3/2, Z̃15ZgZ̃3Z3

1/2,

Z45Zg
2Z3

2 , Z̃45Zg
2Z̃3

2 . ~6!

Note, however, that contrary to standard Faddeev-Po
gaugesZl5” Z3, e.g., at one loop~MS scheme!, one has@43#

Zl5Z32
g2

16p2

1

e
Nc

a

2 S 12
a

2 Dl. ~7!

The gauge-fixing part of the Lagrangian~1! can be written
in the following three equivalent ways:

LGF5
i

2

1

Z3Z̃3

sr s̄r~Z3AA1 iZlZ̃3alcc̄!

1
Zl

Z3
~12a!

l

2
sr~ c̄sr c̄! ~8!

5 isrF c̄S ]A2 i
Zl

Z3

l

2
BD G ~9!

5 iB]A1
Zl

Z3

l

2
B21

Zl

Z3
Z̃1

2 a

2 S 12
a

2 Dl

2
~ c̄3c!2

1 i Z̃3F S 12
a

2 D c̄]Drc1
a

2
c̄Dr]cG . ~10!
3-3
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This is verified by direct calculation via the transformatio
defined in Eqs.~3!. In the form of Eq.~10! the gauge fixing
Lagrangian shows that the renormalization constants in
duced in Eq.~3! correspond to the replacements of bare
renormalized quantities as given above.

We may rewrite the gauge fixing Lagrangian of Eq.~10!
once more,

LGF5 iB]A1
Zl

Z3

l

2
B21

Zl

Z3
Z̃1

2a

2 S 12
a

2 Dl

2
~ c̄3c!2

1 i Z̃3

1

2
~ c̄]Drc1 c̄Dr]c!1 i Z̃1~12a!

1

2
]A~ c̄3c!.

~11!

This emphasizes the role of the gauge parametera. In this
form, the only term not symmetric under Faddeev-Pop
conjugation,c→ c̄ andc̄→2c, is the last one~which is anti-
symmetric with respect to Faddeev-Popov conjugation!. It
vanishes fora51. With the current~real! Hermiticity as-
signment for ghost and antighost fields, the Lagrangian
Hermitian for alla, and it reduces to the standard Fadde
Popov form fora50. We could also introduce Hermitia
adjoint ghost and antighost fields, with the assignmentc†

5 c̄, via the Caley map@44#. This would then lead to

L GF
cc 5 iB]A1

Zl

Z3

l

2
B22

Zl

Z3
Z̃1

2a

2 S 12
a

2 Dl

2
~ c̄3c!2

1Z̃3

1

2
~ c̄]Drc1 c̄ Dr]c!

1Z̃1~12a!
1

4
@ c̄~]A3 c̄!2c~]A3c!#. ~12!

While this form of the Lagrangian, which we will not us
further herein, is still Hermitian, it no longer reduces to t
form of standard Faddeev-Popov theory fora50. Thus the
Faddeev-Popov Lagrangian is only consistent with Hermi
ity for the choice of real ghost fields@17#. With complex
conjugate ghost and antighost fields, additional terms foa
50 survive ~which are absent in standard Fadeev-Pop
gauges!. Only for a51 do both versions, with Hermitian
real or complex conjugate ghost pairs, have the same
grangian and may be interchanged arbitrarily.

B. Ghost and antighost Dyson-Schwinger equations

Without invariance under Faddeev-Popov conjugati
i.e., without ghost-antighost symmetry (a51 or l50), we
have separate ghost and antighost DSEs which arenot iden-
tical. Consider the following representations of the ghost~an-
tighost! derivatives of the action~for brevity we indicate by
subscripts the space-time arguments of fields!:
04500
o-
y

v

is
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v

a-

,

dS

dcx
a
5Z̃3i ~]Drc̄!x

a1
Zll

Z3
Z̃1S 12

a

2 D ~ c̄3B!x
a

2
Zll

Z3
Z̃1

2a

4 S 12
a

2 D @~ c̄3 c̄!3c#x
a

5Z̃3i ~]Drc̄!x
a2

Zll

Z3
s̄rBx

a

52 i s̄r S ]Ax
a2 i

Zll

Z3
Bx

aD , ~13!

dS

d c̄x
a
5Z̃3i ~]Drc!x

a1
Zll

Z3
Z̃1

a

2
~c3B!x

a

1
Zll

Z3
Z̃1

2 a

4 S 12
a

2 D @~c3c!3 c̄#x
a

5Z̃3i ~]Drc!x
a2

Zll

Z3
srBx

a

52 isr S ]Ax
a2 i

Zll

Z3
Bx

aD . ~14!

The two DSEs then follow readily from

K dS

d c̄x
a
c̄y

bL 5K cy
b dS

dcx
aL 5dabdxy . ~15!

Of course, they are related by Faddeev-Popov conjuga
C FP which interchanges the two. In particular,

C FPc5 c̄, C FPc̄52c,

C FPB5B1Z̃1~12a!~ c̄3c!, C FPA5A.
~16!

The transformation of the Nakanishi-LautrupB-field follows
from compatibility with BRS/anti-BRS invariance and

s̄r5C FPsC FP
21. ~17!

On the level of the BRS and anti-BRS transformations
can have this form of Faddeev-Popov conjugation for ar
trary a. However, it is relatively easy to verify that the La
grangian, i.e., the measure of the theory, is not invariant
derC FP and thus ghost and antighost DSEs are not identi
unlessa51 or l50: With the above Faddeev-Popov co
jugation rule for theB-field, the sign change in the last term
of Eq. ~11! is exactly compensated by the first term,

iB]A1 i Z̃1~12a! 1
2 ]A~ c̄3c!

→
CFP

i @B1Z̃1~12a!~ c̄3c!#]A2 i Z̃1~12a! 1
2 ]A~ c̄3c!

5 iB]A1 i Z̃1~12a! 1
2 ]A~ c̄3c!. ~18!
3-4
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In this way, the violations of Faddeev-Popov conjugati
invariance can entirely be moved into the term}lB2, and
they thus obviously disappear in the Landau gaugel50. On
the other hand, in the more general ghost-antighost symm
ric case, witha51 andC FPB5B, the theory does have th
invariance under Faddeev-Popov conjugation for alll and
we can then immediately conclude that expectation value
C FP-odd operators vanish.

Let us now look at one of the ghost DSEs, e.g., from E
~14! we obtain

dabdxy5K dS

d c̄x
a
c̄y

bL 5Z̃3^ i ~]Drc!x
ac̄y

b&2
Zll

Z3
^~srBx

a!c̄y
b&.

~19!

For the second term on the right-hand side we write

^~srBx
a!c̄y

b&5^sr~Bx
ac̄y

b!&2^Bx
a~sr c̄y

b!&

52^Bx
aBy

b&1Z̃1S 12
a

2 D ^Bx
a~ c̄3c!y

b&, ~20!

where we have used that expectation values of total B
variations vanish. For theB-field correlations, and with its
equation of motionZll B5 iZ3]A, one furthermore has

Zll

Z3
^Bx

aBy
b&5dabdxy2

Z3

Zll
^]Ax

a]Ay
b&. ~21!

Inserting Eqs.~20! and ~21! into the ghost DSE~19!, we
arrive at

Z3

Zll
^]Ax

a]Ay
b&5Z̃3^ i ~]Drc!x

ac̄y
b&

1 i Z̃1S 12
a

2 D ^]Ax
a~ c̄3c!y

b&. ~22!

In the last term herein we inserted the equation of mot
~e.o.m.! for the B-field again. This term is odd unde
Faddeev-Popov conjugation and thus vanishes in the gh
antighost symmetric casea51, as asserted above. We th
have the important form of the ghost DSE in the Fadde
Popov symmetric formulation~in which there is only one
such DSE!,

Z3

Zll
^]Ax

a]Ay
b&5Z̃3^ i ~]Drc!x

ac̄y
b&. ~23!

Note that we obtain the same equation for standard Fadd
Popov theory (a50). The important difference from th
standard form of the ghost DSE is given by

Z3^]Ax
a]Ay

b&2Zlldabdxy , ~24!

which vanishes in the usual Faddeev-Popov theory. For g
eral a, however, the Slavnov-Taylor identities are modifi
also and this contribution no longer needs to vanish as
04500
et-

of
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will see at the end of this section. Before that, we give
convenient~symmetrized! form of the ghost DSE valid for
arbitrarya without ghost-antighost invariance. Note that w
could equally have started from the ghost derivative in E
~13! and ^ cy

b(d/dcx
a)S &5dab dxy . This would lead us to

the Faddeev-Popov conjugate of Eq.~22! @obtained from Eq.
~22! with c→ c̄, c̄→2c, and a→22a]. Adding the two,
we obtain a Faddeev-Popov symmetric version in the pl
of Eq. ~22!,

Z3

Zll
^]Ax

a]Ay
b&5Z̃3

1

2
@^ i ~]Drc!x

ac̄y
b&1^cy

bi ~]Drc̄!x
a&#

2 i Z̃1

1

2
~12a!^]Ax

a~ c̄3c!y
b&. ~25!

Just as we have a doubling of ghost DSEs, in the absenc
Faddeev-Popov conjugation invariance, we also have a d
bling of Slavnov-Taylor identities. As the result of one su
new Slavnov-Taylor identity we will derive below that

Z̃1

1

2
^]Ax

a~ c̄3c!y
b&5Z̃3

i

2
@^ i ~]Drc!x

ac̄y
b&2^cy

bi ~]Drc̄!x
a&#.

~26!

This allows us to write for the ghost DSE~25! and general
a, finally,

Z3

Zll
^]Ax

a]Ay
b&5Z̃3F S 12

a

2 D ^ i ~]Drc!x
ac̄y

b&

1
a

2
^cy

bi ~]Drc̄!x
a&G . ~27!

For a50 ~or 2! the left-hand side reduces to unity and o
obtains the ghost DSE of standard Faddeev-Popov the
For a51 both terms on the r.h.s. are identical and add up
that of Eq.~23!.

The main difference, as compared to the ordina
Faddeev-Popov gauge, in an explicit representation of
ghost DSE will be a new type of diagrams generated by
four-ghost interaction. The formal structure of the glu
DSE, on the other hand, remains unchanged.

For completeness we have provided a derivation of
ghost DSE starting directly from the Lagrangian~1! in Ap-
pendix A. For all details, the interested reader is referred
this appendix as well as Appendix B, which contains t
definitions of Green’s functions and the decompositions
full into connected and one-particle irreducible Green’s fun
tions. Employing the definitions of the bare ghost-gluon a
the bare four-ghost vertex, see Appendix B, the Dys
Schwinger equation for the ghost propagator in coordin
space reads
3-5
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@DG
ab~x2y!#215Z̃3@DG

(0)ab~x2y!#212Z̃1E d4zd4ud4vd4z1d4z2d4z3Gm
(0)bde~y,u,v !Dmn

e f ~v2z1!

3Gn
f ha~z1 ,z3 ,x!DG

hd~u2z3!.2Z̃4E d4ud4vG4gh
(0)bd f a~x,u,v,y!DG

f d~v2u!

2Z̃4

1

2E d4zd4ud4vd4u1d4u2d4u3d4u4G4gh
(0)bdg f~y,z,v,u!DG

f e~u2u4!DG
gi~v2u2!

3G4gh
jaei~u3 ,x,u4 ,u2!DG

jd~u32z!2Z̃4

1

2E d4zd4ud4vd4u1d4u2d4u3d4u4d4u5

3G4gh
(0)bdg f~y,z,v,u!Dmn

ek ~u12u4!DG
f l~u2u5!Gn

kal~u4 ,x,u5!DG
gi~v2u2!Gm

ei j~u1 ,u3 ,u2!DG
jd~u32z!.

~28!

Fourier transformation to momentum space yields

@DG~p!#215Z̃3@DG
(0)~p!#212Z̃1

g2Nc

~2p!4E d4qGm
(0)~p,q!Dmn~p2q!Gn~q,p!DG~q!2Z̃4

g2Nc

~2p!4E d4qG4gh
(0) DG~q!

1Z̃4

1

2

g4Nc
2

~2p!8E d4q1q2G4gh
(0) DG~q1!DG~p2q12q2!G4gh~p,q1 ,q2!DG~q2!2Z̃4

1

4

g4Nc
2

~2p!8

3E d4q1q2G4gh
(0) Dmn~p2q1! DG~q1!Gn~p,q1! DG~q2!Gm~2p1q11q2 ,q2!DG~p2q12q2!. ~29!

The color traces have already been carried out and the reduced vertices defined in Appendix B have been used. The
interaction generates three new diagrams in the ghost equation, a tadpole contribution and two two-loop diagrams.
more, the bare ghost-gluon vertex depends on the gauge parametera,

Gm
(0)abc~k,p,q!5g fabc~2p!4d4~k1q2p!Gm

(0)~p,q!

Gm
(0)~p,q!5F S 12

a

2 Dqm1
a

2
pmG . ~30!

Note the symmetry between the the ghost momentumpm and the antighost momentumqm , when the gauge parametera is set
to 1.

C. Projection of the gluon equation

The respective equation for the gluon propagator is formally the same as in the Faddeev-Popov case. Differences
the explicit form of the bare ghost-gluon vertex and the dressed vertices in general depend on the gauge parameters.
DSE reads

@D~p!#mn
215Z3@D (0)~p!#mn

211Z̃1

g2Nc

~2p!4E d4qGm
(0)~p,q! DG~p2q!Gn~q,p!DG~q!

2Z1

1

2

g2Nc

~2p!4E d4qGmrs
(0) ~p,q! Drr8~p2q!Gr8ns8~q,p!Dss8~q!2Z4

1

2

g2Nc

~2p!4E d4qGmnrs
(0) Drs~q!

2Z4

1

6

g4Nc
2

~2p!8E d4q1q2Gmrsl
(0) Drr8~q2! Dss8~p2q22q1!Gr8nl8s8~p,q1 ,q2!Dll8~q1!

2Z4

1

2

g4Nc
2

~2p!8E d4q1q2Gmrsl
(0) Drr8~p2q12q2!Dss8~q2!Gr8zs8~p2q12q2 ,q2!

3Dzz8~p2q1!Gz8nl8~p2q1 ,q1! Dll8~q1!. ~31!
045003-6
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FIG. 1. The coupled gluon and ghost Dyso
Schwinger equations from a BRS and anti-BR
symmetric Lagrangian. Each equation contai
one-loop diagrams, a tadpole contribution, and
sunset and a squint diagram.
n
th
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nd
nt

or
t
orre-

the
Both equations are shown diagrammatically in Fig. 1. O
clearly sees the striking similarity between the ghost and
gluon equation once a four-ghost interaction has been in
duced. Both equations have bare and one-loop parts, a
pole contribution, a sunset, and a squint diagram.

In order to sort the various contributions of the glu
equation to the inverse of the gluon propagator on the l
04500
e
e
o-
d-

t-

hand side we project the equation on its longitudinal a
transverse parts. It is well known that for linear covaria
gauges,a50, the longitudinal part of the gluon propagat
remains undressed@3#. However, away from linear covarian
gauges this is not the case, as can be seen from the c
sponding Slavnov-Taylor identity derived in@18#. We then
have three dressing functions in the general case and
c-
al
st
FIG. 2. Various contributions from the respe
tive diagrams in the transverse and longitudin
gluon equation and the equation for the gho
dressing function.
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propagators are given by

Dmn~p!5@Dmn~p!#T1@Dmn~p!#L

5S dmn2
pmpn

p2 D Z~p2!

p2
1lL~p2!

pmpn

p4
, ~32!

DG~p!52
G~p!

p2
. ~33!

The transversal and longitudinal gluon dressing functio
Z(p2) andL(p2) can be extracted by contracting the glu
equation with the transversal and longitudinal projector,
spectively. The results are given graphically in Fig. 2, wh
we also specify our notation for the different contributio
being analyzed in the next section. Contributions in
transversal part of the gluon equation are denoted by
symbol V, contributions in the longitudinal part byW, and
the ones in the ghost equation byU. The subscriptsT andL
indicate the respective parts of the gluon propagator runn
around in the loops of the diagrams and abbreviations for
diagrams are used. For example, the symbolWLLT

sun denotes a
contribution from the sunset diagram to the longitudin
gluon equation with two longitudinal and one transverse p
of the gluon propagator running in the loop. To isolate t
dressing functions, the left-hand sides of the equations h
already been divided by factors of 3p2 andp2, respectively.

D. Generalized Slavnov-Taylor identities

To derive the generalization of the Slavnov-Taylor ide
tity for the longitudinal gluon propagator, we start from th
following BRS variations:
tu
he
qu

re
t

04500
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e

e
e
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e
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-

sr~]Ax
ac̄y

b!52Z̃3~]Drc!x
ac̄y

b1]Ax
aS B2Z̃1

a

2
~ c̄3c! D

y

b

,

~34!

s̄r~]Ax
acy

b!52Z̃3~]Drc̄!x
acy

b2]Ax
aFB1Z̃1S 12

a

2 D ~ c̄3c!G
y

b

.

~35!

The corresponding vacuum expectation values vanish,
taking combinations of the expectation values of these eq
tions we obtain

05S 12
a

2 D ^sr~]Ax
ac̄y

b!&2
a

2
^s̄r~]Ax

acy
b!&

52Z̃3S 12
a

2 D ^~]Drc!x
ac̄y

b&

1Z̃3

a

2
^~]Drc̄!x

acy
b&1^]Ax

aBy
b&. ~36!

Upon insertion of the e.o.m. of theB-field, Zll B5 iZ3]A,
this directly leads to Eq.~27!. On the other hand, the ghos
DSEs from Eqs.~13! and~14! allow us to eliminate the first
two terms on the r.h.s., multiplying to them appropriate fa
tors ofa/2 and 12a/2 and inserting these expression in E
~36!, yielding
Z3^]Ax
a]Ay

b&5ZllH dabdxy2 i Z̃1

a

2 S 12
a

2 D ^~]A3c!x
ac̄y

b&1
Zll

Z3
Z̃1

2 a

2 S 12
a

2 D 2

^@~ c̄3c!3c#x
ac̄y

b&

1 i Z̃1

a

2 S 12
a

2 D ^~]A3 c̄!x
acy

b&1
Zll

Z3
Z̃1

2 a2

4 S 12
a

2 D ^@~ c̄3c!3 c̄#x
acy

b&J . ~37!
the
ssed

g

This generalizes the Slavnov-Taylor identity for the longi
dinal part of the gluon propagator which, contrary to t
standard Faddeev-Popov gauges, does in general ac
renormalization by the interactions, cf. Eq.~7!. On the r.h.s.
of the Slavnov-Taylor identity, the terms on the third line a
the Faddeev-Popov conjugate of those on the second. In
ghost antighost symmetric case fora51 they are identical.
In this case the Slavnov-Taylor identity simplifies,

Z3^]Ax
a]Ay

b&5ZllH dabdxy2 i Z̃1

1

2
^~]A3c!x

ac̄y
b&

1
Zll

Z3

Z̃1
2

4
^@~ c̄3c!3c#x

ac̄y
b&J . ~38!
-

ire

he

Note that close to the Landau gauge the corrections to
unity of the standard Faddeev-Popov gauges are suppre
by one order in the gauge parameterl.

A further Slavnov-Taylor identity is obtained by addin
the expectation values of the BRS variations in Eqs.~34! and
~35!:

05^sr~]Ax
ac̄y

b!&1^s̄r~]Ax
acy

b!&

52Z̃3^~]Drc!x
ac̄y

b&2Z̃3^~]Drc̄!x
acy

b&

2Z̃1^]Ax
a~ c̄3c!y

b&. ~39!
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This leads to Eq.~26! as promised in the previous subse
tion.

These Slavnov-Taylor identities indicate that the Land
gauge limitl→0 is smooth. Based on Eqs.~37! and ~39!,
one may anticipate that an infrared masslesslike longitud
part of the gluon propagator leads for sufficiently small v
ues of the gauge parameterl to the same infrared enhanc
ment of ghosts as observed in the Landau gauge.

III. INFRARED ANALYSIS WITH BARE VERTICES
FOR ARBITRARY GAUGE PARAMETERS

In this section, we will analyze the behavior of the tw
point functions at small momentap2. We will employ a trun-
cation scheme that successfully has been applied in the
of the Landau gauge@7–9# and explore its applicability to
general gauges.

An interesting result of the investigations in the Land
gauge is the observation that there is no qualitative dif
ence of the solutions found with bare vertices or with ve
ces dressed by the use of Slavnov-Taylor identities. This
not only been found in truncations using angular approxim
tions @4,5# for the integrals, but has been confirmed recen
for a range of possible vertex dressings in a truncat
scheme without any angular approximations@8#. The reason
for this somewhat surprising result has been attributed to
nonrenormalization of the ghost-gluon vertex in the Land
gauge, that is,Z̃151. It seems as if the violation of gaug
invariance using a bare vertex is not that severe in the L
dau gauge such that the resulting equations still prov
meaningful results. In the following, we will explore to wh
extent such a simple truncation idea is applicable in ot
gauges whereZ̃15” 1.
n
g
tr

m
r

of
o
d

g
-

04500
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In the Landau gauge, the coupled set of Dyson-Schwin
equations is solved by pure power laws for the ghost a
gluon dressing functions. Such solutions are determined a
lytically by plugging a power-lawAnsatzin the equations
and matching appropriate powers on the left- and right-h
sides. Once several power solutions have been found,
remaining task is to single out the one matching the num
cal solution of the renormalized equation. In the Land
gauge, it has been shown that indeed only one of the po
solutions found in Refs.@7,8# is the correct infrared limit of
the renormalized solution@9# by solving the equations nu
merically for all momenta. In the following, we will investi
gate whether there are power solutions at all using bare
tices for general gauge parametera andl.

Now we employ the power-lawAnsatzfor the dressing
functions,

G~x!5Bxb, Z~x!5Axs, L~x!5Cxr, ~40!

wherex5p2 has been used. Together with the expressi
for the bare vertices given in Appendix B, we plug the pow
laws into the ghost and the gluon equation. The formulas
the various integrals are given in Appendix C. The straig
forward but tedious algebra is done with the help of t
algebraic manipulation programFORM @40#. In Ref. @8# it has
been shown that the renormalization functionsZ3 andZ̃3 do
not play a role in the determination of possible power so
tions of the equations in the infrared region of momentu
Furthermore, the tadpoles just give constant contribution
the respective propagators which vanish in the process
renormalization. Thus we safely omit them in the pres
investigation.

For the most general gauges,aÞ0 andlÞ0, we obtain
the following structure:
B21x2b5xs1b~U8!T
dress1xr1b~U8!L

dress1x3b~U8!sun1xs13b~U8!T
squint1xr13b~U8!L

squint, ~41!

A21x2s5x2b~V8!ghost1x2s~V8!TT
glue1xs1r~V8!TL

glue1x2r~V8!LL
glue1x3s~V8!TTT

sun1x2s1r~V8!TTL
sun1xs12r~V8!TLL

sun

1x3r~V8!LLL
sun1x4s~V8!TTTT

squint1x3s1r~V8!TTTL
squint1x2s12r~V8!TTLL

squint1xs13r~V8!TLLL
squint1x4r~V8!LLLL

squint, ~42!

~Cl!21x2r51x2b~W8!ghost1x2s~W8!TT
glue1xs1r~W8!TL

glue1x3s~W8!TTT
sun1x2s1r~W8!TTL

sun1xs12r~W8!TLL
sun

1x3r~W8!LLL
sun1x4s~W8!TTTT

squint1x3s1r~W8!TTTL
squint1x2s12r~W8!TTLL

squint1xs13r~W8!TLLL
squint. ~43!
he

lar
Here the primed quantities are momentum-independent fu
tions of b, s, and r; cf. Fig. 2, where the correspondin
unprimed, momentum-dependent quantities have been in
duced. The pattern of the equation is such that each pri
factor on the right-hand side is accompanied by the squa
momentumx to the power of the dressing function content
the respective diagram. In Appendix D, we demonstrate h
such a pattern emerges, for example, from the sunset
gram in the ghost equation, (U)sun. Note that the contribu-
tions (W8)LL

glue and (W8)LLLL
squint are zero and therefore missin

in the longitudinal gluon equation~43! as momentum con
c-

o-
ed
ed

w
ia-

servation cannot hold with three longitudinal gluons in t
three-gluon vertex.

For the following argument, we focus on one particu
contribution on each right-hand side of the equations:

B21x2b5x3b~U8!sun1•••, ~44!

A21x2s5x4s~V8!TTTT
squint1•••, ~45!

~Cl!21x2r5x3r~W8!LLL
sun1•••. ~46!
3-9



b
d
e

on
in

he
t o
n

s

i
s
-

ic
th

en

e
io
ed

in
n

th
r-
al
-

t
t

e

the
-

d.
e
er-
wo

an
ess-

ge

con-

with

al

us
ua-
ce

d in
ve
tive
the

of
has

-
the

ALKOFER et al. PHYSICAL REVIEW D 68, 045003 ~2003!
The coefficients (U8)sun, (V8)TTTT
squint, and (W8)LLL

sun are
nonzero and explicitly given in Appendix D.First, it is now
easy to see from Eqs.~44!, ~45!, and~46! that neitherb nor
s nor r can be negative. If one of these powers would
negative, the limitx→0 would lead to a vanishing left-han
side of the respective equation whereas the right-hand sid
singular in this limit. This is a contradiction as the power
the left-hand side of the equation should match the lead
power on the right-hand side.Second, if one of b, s, or r
would be positive, then the diverging left-hand side of t
respective equation would require a diverging counterpar
the right-hand side. However, all powers on the right-ha
side are positive as we already concluded thatb, s or r are
not negative and there are no minus signs in any power
the right- hand sides, cf. Eqs.~41!, ~42!, and~43!. Therefore,
for positive powers all terms on the right-hand side vanish
the limit x→0, which leads again to a contradiction. The la
possibility is thenb5s5r50, but then one gets perturba
tive logarithms on the right-hand side of the equation wh
do not match the constant on the left-hand side. Thus in
all-bare-vertex truncation there is no power solution for g
eral values of the gauge parametersl5” 0 anda5” 0. Based
on the considerations on the Slavnov-Taylor identities giv
in the previous section, we therefore arrive at the conclus
that this truncation is insufficient to determine the infrar
behavior of the propagators even qualitatively.

There are two limits for the gauge parametersa andl in
which the situation changes. The first one isa50, that is,
ordinary linear covariant gauges. Due to the correspond
Slavnov-Taylor identity, the longitudinal part of the gluo
propagator remains undressed,L(p2)51 @3#. However, re-
placing dressed vertices by bare ones in the infrared,
identity might be violated~which does not happen in pertu
bation theory, of course!. We therefore employ the gener
expressionL(p2)5C(p2)r for the longitudinal gluon dress
ing function and explore whether the limitr→0 can be
taken with bare vertices. In the ghost equation, the squin
well as the sunset diagram disappear and we are left with
one-loop contributionsUT

dress and UL
dress. The explicit ex-

pression for the ghost equation is given by~cf. Appendix D!

B21x2b5UT
dress1UL

dress ~47!

5x(b1s)
g2NcZ̃1AB

16p2

23

2~b1s!~211b1s!

3
G~21b!G~11s!G~22b2s!

G~12b!G~22s!G~31b1s!

2x(b1r)
g2NcZ̃1lBC

16p2

r11/2

b

3
G~21b!G~11r!G~2b2r!

G~2b!G~22r!G~31r1b!
. ~48!

For r→0, we run into the same contradiction as explain
above for general values of the gauge parametersa andl.
However, admitting the generation of a~spurious! longitudi-
04500
e

is

g

n
d

on

n
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h
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n
n

g

is

as
he

d

nal gluon dressing, this contradiction can be resolved in
following way: Equation~45! for the transversal gluon dress
ing function does not change in structure, therefores.0.
Furthermore, we haver.0 from Eq. ~46!. Then we have
22b5s and/or22b5r in the ghost equation~48! andb
,0, i.e., a diverging ghost dressing function in the infrare
From this it follows immediately that the ghost loop is th
dominant contribution in both the equations for the transv
sal and longitudinal gluon dressing function. From these t
equations we therefore infer

2b5s/25r/25:k, ~49!

which is consistent with the ghost equation. We thus find
infrared vanishing gluon dressing and a singular ghost dr
ing function for all values of the gauge parameterl. This
result is identical to the one in the Landau gauge@7–9#.
However, a word of caution is in order. In the Landau gau
there are indications@4,41# that the general result~49! does
not change when the vertices are dressed. This has been
firmed recently for a range of possible vertex dressings@8#. It
is an as yet open question whether this is true forlÞ0 in the
same way.

Having addressed the case of linear covariant gauges
a50, we now turn to the other interesting limit, that is,l
50, while aÞ0. It is easy to see that thea-dependence of
the Lagrangian~1! can be eliminated in this case by parti
integration using the constraint]A50. However, on the
level of the DSEs with bare vertices there remain spurio
a-dependent terms on the right-hand side of the gluon eq
tion. In the next section we will investigate the dependen
of the Landau gauge solution on these spuriousa terms.

IV. SOLUTIONS IN THE LANDAU GAUGE

To assess the influence of the spuriousa terms in the
Landau gauge, we use the truncation scheme develope
@9#. There the two-loop diagrams in the gluon equation ha
been neglected as they are subleading in the perturba
regime and ghost loop dominance has been assumed in
infrared. In order to obtain the correct one-loop behavior
the ghost and gluon dressing functions, the gluon loop
been modified by replacing the renormalization constantZ1
by a momentum-dependent functionZ1,

Z1~L,s!→Z1~x,y,z;s,L !

5
G~y!(2226d)

Z~y!(113d)

G~z!(2226d)

Z~z!(113d)
. ~50!

Here L5L2 denotes a cutoff ands5m2 a renormalization
scale in units of squared momenta. The momentumx5p2 is
the one flowing into the loop,y5q2 is the loop momentum
over which it is integrated, andzªk25(p2q)2. Further-
more, the anomalous dimensiond of the ghost dressing func
tion has been used. The gluon equation is contracted with
general tensor
3-10
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P mn
(z)~p!5dmn2z

pmpn

p2
. ~51!

As a completely transversal gluon equation would be in
pendent of the parameterz, the use of the general projecto
provides an opportunity to test for violations of transversa
due to the truncation. Forz5” 4, one has to take care o
spurious quadratic divergencies that have to be subtracte
the kernel of the gluon equation.

The coupled set of equations for the ghost and glu
dressing functions then read as follows:

1

G~x!
5Z32g2NcE d4q

~2p!4

K~x,y,z!

xy
G~y!Z~z!, ~52!

1

Z~x!
5Z̃31g2

Nc

3 E d4q

~2p!4

M ~x,y,z!

xy
G~y!G~z!

1g2
Nc

3 E d4q

~2p!4

Q~x,y,z!

xy
Z~y!Z~z!Z1~y,z!.

~53!

The kernels ordered with respect to powers ofzªp25(k
2q)2 have the form
th
s
et
nt

,

t

n

as
he

04500
-

in

n

K~x,y,z!5
1

z2 S 2
~x2y!2

4 D1
1

z S x1y

2 D2
1

4
, ~54!

M ~x,y,z!5
1

z S ~z21!a22~z21!2a1z22

4
x1

y

2
2

z

4

y2

x D
1

1

2
1

z

2

y

x
2

z

4

z

x
, ~55!

Q~x,y,z!5
1

z2 S 1

8

x3

y
1x22

192z

8
xy1

52z

4
y21

z

8

y3

x D
1

1

z S x2

y
2

151z

4
x2

172z

4
y1z

y2

x D
2S 192z

8

x

y
1

172z

4
1

9z

4

y

xD1zS z

x
1

52z

4y D
1z2

z

8xy
1

5

4
~42z!. ~56!

First we accomplish the infrared analysis. With Eq.~49!
we employ theAnsatz

Z~x!5Ax2k, G~x!5Bx2k ~57!

in Eqs.~52! and~53!. After integration we match coefficient
of equal powers on both side of the equations and obtain
1

18

~21k!~11k!

~322k!
5

~4k22!~211k!

~z21!@4k2~a222a11!18ka~22a!13a~a22!#1k~1027z!2613z
. ~58!
,

io-
red

e of

u-
rect

n

The values ofk for different projectorsP (z) can be read off
Fig. 3. The curve given by the fully drawn line represents
term on the left-hand side of Eq.~58!, whereas the other line
depict the right-hand side for several values of the param
z. Only the twoz51 solutions are manifestly independe
of a, as pointed out in@8#. The spuriousa dependence of the
z54 values reported therein here implies that generalz so-
lutions must necessarily show such ana dependence also
wheneverz5” 1. However, the bulk of solutions betweenk
50.5 andk50.6 remains nearly unchanged whena is var-
ied, whereas most of the solutions fork>1 disappear. For
the Brown-Pennington projectorz54, no solution can be
found for the symmetric case,a51, in complete agreemen
with the findings of Ref.@8#. Indeed it has been shown@9#
that only the smaller solutions are those that connect to
merical results for finite momenta.

We now explore the impact of the spuriousa term on the
behavior of the solutions for all momentax. We have solved
Eqs.~52! and ~53! numerically using the same technique
described in@9#. The results can be seen in Fig. 4. As t
dependence of the kernel of the ghost loop ona vanishes in
the case of the transverse projector,z51, this solution is the
e

er

u-

same as the one already calculated in@9#. For the other cases
the powerk changes from 0.5953 forz51 to 0.5020 forz
53.9 in accordance with the infrared analysis. The ultrav
let properties of the solutions are slightly disturbed compa
to the casesa50 anda52. An analysis of the ultraviolet
behavior done similarly to the one in Ref.@9# reveals that the
a term in the ghost loop induces a spurious dependenc
the anomalous dimensions on the parameterz,

g5
2262~z21!a~22a!

441~z21!a~22a!
,

d5
29

441~z21!a~22a!
. ~59!

For generala only the transverse projector removes the sp
rious term in the ghost equation and leads to the cor
one-loop scaling of the equations, that is,d529/44 for the
ghost andg5213/22 for the gluon dressing function for a
arbitrary number of colors and zero flavors.
3-11
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FIG. 3. Here the graphical solution to Eq.~58! is shown. The thick line represents the left hand side of Eq.~58!, whereas the other curve
depict the right-hand side for different values of the parametersz. The left figure shows results fora50 anda52, whereas in the figure
on the righta51. The ellipse marks the bulk of solutions betweenk50.5 andk50.6 for z51, whereas the circles in the left figure sho
the movement of the solution for the Brown-Pennington casez54 from k51 to k51.3.
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V. CONCLUSION

We have studied the infrared behavior of the ghost a
gluon propagators in general covariant gauges. These ga
allow us to interpolate via a second gauge parameter betw
the linear-covariant ones of standard Faddeev-Popov th
and the ghost-antighost symmetric gauges. We derived
corresponding generalized Dyson-Schwinger equations
the propagators which include the ones of linear-covar
gauges as the limit where the second gauge parameter
ishes. Note that ghost-antighost symmetric gauges are
ticularly interesting as they allow an interpretation of t
antighost field being the antiparticle of the ghost which
cludes also the possibility of a ghost-antighost condens
Due to the emergence of a four-ghost interaction term in
Lagrangian for general values of gauge parameters,
Dyson-Schwinger equation of the ghost propagator disp
a rich structure very similar to the one of the gluon equati
On the other hand, in the gluon equation we obtain the sa
structure as in linear covariant gauges apart from the fact
the gluon propagator acquires a nontrivial longitudinal p
which appears in turn in all diagrams. The gluon and gh
equations depend therefore on three dressing functions,
for the ghost, one for the transverse part of the gluon pro
gator, and one for the longitudinal one, which are co
strained, however, by Slavnov-Taylor identities in an int
cate way.

We then employed a truncation scheme for the Dys
Schwinger equations that uses bare vertices in place of
dressed ones. The success of this particular trunca
scheme in the Landau gauge has been attributed to the
renormalization of the ghost-gluon vertex, that is,Z̃151. We
addressed the infrared behavior of the ghost and gl
propagators for general gauges by employing power-lawAn-
sätze for the respective dressing functions. We then ha
04500
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en
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-
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e

been able to evaluate the infrared behavior of the gluon
ghost equations analytically.

For all linear covariant gauges we find a similar result
compared to the one in the Landau gauge: an infrar
suppressed gluon propagator and an infrared-enhanced g
Whereas in the Landau gauge there are indications that
generic result is not changed when the vertices are dre
@8#, it remains an open question whether this is the cas
linear covariant gauges in general. Away from linear cova
ant gauges, that is in the general caseaÞ0 and
lÞ0, we do not find power solutions for the dressing fun
tions. However, we expect this to change with appropri
vertex dressings. Nevertheless, it remains to be emphas
that therefore also the occurrence of a ghost and/or gl
mass is excluded in this specific truncation scheme wit
this class of gauges. A Dyson-Schwinger equation-based
vestigation of the related question of a ghost-antigh
vacuum condensate, or more generally, of an ‘‘on-she
BRS-invariant dimension 2 condensate, needs to take
account the generalized Slavnov-Taylor identities~37! and
~39!. The question arises whether an infrared massless
longitudinal part of the gluon propagator leads for all valu
of the gauge parameters to the same infrared enhanceme
ghosts as observed in the Landau gauge. Work in this di
tion is in progress.

A special case among all gauges considered here is
Landau gauge. In the limitl50, the general Lagrangian~1!
becomes independent of the second gauge parametera, thus
the Landau gauge is also a special case of ghost-antig
symmetric gauges. Although the Lagrangian of the theor
independent of the gauge parametera, our simple truncation
scheme breaks this invariance and spuriousa-dependent
terms arise in the ghost loop of the gluon Dyson-Schwin
equation. Examining the casea51, we showed that the in
fluence of these spurious terms is very small. We determi
3-12



oth
-

al,
f the
o-

ted
he
up-
9/
83

ual
to
al-

he
ins

-
tfor-

n’s
r-

es
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FIG. 4. Shown are the gluon dressing function, the ghost dr
ing function, and the running coupling in the truncation scheme@9#
for the gauge parametersa51 andl50 and different projectors
P (z).
04500
solutions for the ghost and gluon dressing functions b
analytically in the infrared and numerically for finite mo
menta and found solutions identical to the ones of Ref.@9#
provided the gluon equation is projected onto its physic
transversal components. We thus recovered the results o
Landau gauge from a different direction in the tw
dimensional space of gauge parameters.
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APPENDIX A: DERIVATION OF THE
DYSON-SCHWINGER EQUATION FOR THE GHOST

PROPAGATOR

We start by transforming the Lagrangian~1! into a more
suitable form by partial integration, assuming the us
boundary conditions of vanishing fields at infinity. In order
keep notation on a readable level, we will suppress renorm
ization constants in this appendix: The derivation of t
Dyson-Schwinger equation for the ghost propagator rema
formally unchanged by the rescaling~5! and thus the appro
priate renormalization constants can be regained straigh
wardly. We obtain

L5
1

2
Am

a F2]2dmn1S 12
1

l D ]m]nGAn
a2g fabc~]mAn

a!Am
b An

c

1
g2

4
f abef cdeAm

a An
bAm

c An
d1 c̄a]2ca

1
a

2 S 12
a

2 D l

2
g2f acef bdec̄ac̄bcccd

1 i S 12
a

2 Dg fabcc̄a]m~Am
c cb!1 i

a

2
g fabcc̄aAm

c ]mcb.

~A1!

The partition function of the theory is given by

Z@J,s,s̄#5E D@Ac̄c#

3expH 2E d4zL1E d4z~AaJa1s̄c1 c̄s!J
~A2!

with the sourcesJ, s and s̄ of the gluon, antighost and
ghost fields, respectively. The action is given byS@J,c,c̄#
5*d4z L. The generating functional of connected Gree
functions,W@J,s,s̄#, is defined as the logarithm of the pa
tition function. The functional Legendre transform ofW is
the effective action

s-
3-13
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G@A,c̄,c#52W@J,s,s̄#1E d4z~AaJa1s̄c1 c̄s!,

~A3!

which is the generating functional of one-particle irreducib
vertex functions. The fields and sources can be written
functional derivatives of the respective generating functi
als in the following way:

dW

ds
5 c̄,

dW

ds̄
5c,

dW

dJm
5Am ,

dG

dc
5s̄,

dG

d c̄
5s̄,

dG

dAm
5Jm . ~A4!

The sign conventions have been chosen such that deriva
with respect toc̄ ands̄ are left derivatives whereas the on
with respect toc ands are right derivatives,

d

d~s̄,c̄!
ª left derivative,

d

d~s,c!
ªright derivative.

~A5!

Given that the functional integral is well-defined, th
Dyson-Schwinger equation for the ghost propagator is
rived from the observation that the integral of a total deriv
tive vanishes provided the measure is invariant under fi
translations. We take the derivative with respect to the a
ghost field and obtain

05E D@Ac̄c#
d

d c̄
expH 2E d4zL1E d4z~AaJa1s̄c1 c̄s!J

5E D@Ac̄c#S 2
dS@A,c,c̄#

d c̄
1s D

3expH 2E d4zL1E d4z~AaJa1s̄c1 c̄s!J

5S 2

dSF d

dJ
,

d

ds̄

d

dsG
d c̄

1sD Z@J,s,s̄#. ~A6!
04500
s
-

es

-
-
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Now we use the relations~A4! and apply a further functiona
derivative with respect to the sourcesb(y). We arrive at

05S 2
dS

d c̄c~z!
c̄b~y!1sc~z!c̄b~y!1d~z2y!dcbD Z@J,s,s̄#

~A7!

with explicit color indices and space-time arguments. Sett
the sources equal to zero we obtain the ghost Dys
Schwinger equation

K dS

d c̄c~z!
c̄b~y!L 5d~z2y!dcb . ~A8!

The derivative is easily calculated

dS

d c̄c~z!
5]2cc~z!1

a

2 S 12
a

2 D l

2
g2f cdef f gec̄d~z!cf~z!cg~z!

1 i S 12
a

2 Dg fcde]m@Am
e ~z!cd~z!#

1 i
a

2
g fcdeAm

e ~z!]mcd~z!. ~A9!

Whereas in the covariant formalism full and connectedthree-
point functionsare the same, thefour-point correlationshave
to be decomposed into disconnected and connected parts
the four-ghost correlation function this results in

^c̄b~y!c̄d~z!cf~z!cg~z!&

5^ c̄b~y!cg~z!&^c̄d~z!cf~z!&2^c̄b~y!cf~z!&

3^c̄d~z!cg~z!&1^c̄b~y!c̄d~z!cf~z!cg~z!&conn.

~A10!

Keeping in mind the Grassmann nature of the ghost
antighost fields we then obtain
2d~z2y!dcb5]2^ c̄b~y!cc~z!&1
a

2 S 12
a

2 D l

2
g2f cdef f ge$^c̄b~y!c̄d~z!cf~z!cg~z!&1~^c̄b~y!cg~z!&^c̄d~z!cf~z!&

2^c̄b~y!cf~z!&^c̄d~z!cg~z!&!%1S 12
a

2 Dg fcde^c̄b~y!]m@Am
e ~z!cd~z!#&1

a

2
g fcde^c̄b~y!Am

e ~z!]mcd~z!&,

~A11!

where all correlations are connected Green’s functions. We now use the relation
3-14
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d~y2x!dab5
ds̄b~y!

ds̄a~x!
5E d4z

ds̄b~y!

d c̄d~z!

d c̄d~z!

ds̄a~x!

5E d4z
d2G

d c̄d~z!dcb~y!

d2W

ds̄a~x!dsd~z!

5:E d4z@DG
db~z2y!#21DG

ad~x2z! ~A12!

and multiply Eq.~A11! with 2@DG
ac(x2z)#215@^c̄c(z)ca(x)&#21. We arrive at

@DG
ab~x2y!#215]2d~x2y!dab2

a

2 S 12
a

2 D l

2
g2f cdef f geE d4z@DG

ac~x2z!#21$^ c̄b~y!c̄d~z!cf~z!cg~z!&

1^c̄b~y!cg~z!& ^ c̄d~z!cf~z!&2^c̄b~y!cf~z!& ^c̄d~z!cg~z!&%2 i S 12
a

2 Dg fcde

3E d4z@DG
ac~x2z!#21^c̄b~y!]m@Am

e ~z!cd~z!#&2 i
a

2
g fcdeE d4z@DG

ac~x2z!#21^ c̄b~y!Am
e ~z!]mcd~z!&.

~A13!

Before we decompose the connected Green’s functions into one-particle irreducible ones, we have to take care of t
time derivatives. Noting that

]m
z d2W

dJm
c ~z!sd~z!

52E d4u]m
u @d~u2z!#

d2W

dJm
c ~u!sd~u!

52E d4@uv#]m
u @d~u2z!#d~u2v !

d2W

dJm
c ~v !sd~u!

~A14!

with the abbreviationd4ud4v5: d4@uv#, and

d

dJm
c ~z!

]m
z dW

sd~z!
5E d4@uv#d~u2z!d~u2v !

d

dJm
c ~v !

]m
u dW

sd~u!

52E d4@uv#]m
u @d~u2z!d~u2v !#

d2W

dJm
c ~v !sd~u!

~A15!

we can replace the derivative terms by the bare ghost-gluon vertex defined in Appendix B. The tadpole term can be t
the following way:

E d4z@DG
ac~x2z!#21f cdef f ge$^c̄b~y!cg~z!&^c̄d~z!cf~z!&2^c̄b~y!cf~z!&^c̄d~z!cg~z!&%

52E d4z@DG
ac~x2z!#21f cdef f ge$^c̄b~y!cg~z!&^c̄d~z!cf~z!&%

52E d4@zuv#@DG
ac~x2z!#21d~z2u!d~u2v ! f cdef f geDG

gb~z2y!DG
f d~v2u!

52E d4@uv#d~x2y!d~z2u!d~u2v ! f bdef f aeDG
f d~v2u!. ~A16!
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Plugging the expressions for the ghost-gluon loop and the one for the tadpole into Eq.~A13! and using the expression for th
bare four-ghost vertex given in Appendix B, we obtain

@DG
ab~x2y!#215]2d~x2y!dab2E d4@uv#G4gh

(0)bd f a~x,u,v,y!DG
f d~v2u!1

a

2 S 12
a

2 D l

2
g2f cdef f ge

3E d4@zuv#d~z2u!d~u2v !@DG
ac~x2z!#21^c̄b~y!c̄d~z!cf~u!cg~v !&

2E d4@zuv#Gm
(0)cde~z,u,v !@DG

ac~x2z!#21^ c̄b~y!Am
e ~v !cd~u!&. ~A17!

To decompose the connected Green’s functions into one-particle irreducible ones, we use the relations

^Am
e ~v !c̄b~y!cd~u!&5E d4@z1z2z3#Dmn

e f ~v2z1!DG
bg~y2z2!Gn

f hg~z1 ,z3 ,z2!DG
hd~u2z3!, ~A18!

^c̄b~y!c̄d~z!cf~u!cg~v !&5E d4@u1u2u3u4u5u6#$Dmn
ek ~u12u4!DG

f l~u2u5!Gn
khl~u4 ,u6 ,u5!DG

hb~u62y!

3DG
gi~v2u2!Gm

e ji~u1 ,u3 ,u2!DG
jd~u32z!%2E d4@u1u2u3u4u5#

3$DG
f e~u2u4!DG

hb~u52y!3DG
gi~v2u2!G4gh

jhei~u3 ,u5 ,u4 ,u2!DG
jd~u32z!%, ~A19!

which have been derived in Appendix B.
Substituting these expressions into Eq.~A17!, we arrive at the final expression for the ghost Dyson-Schwinger equatio

coordinate space:

@DG
ab~x2y!#215@DG

(0)ab~x2y!#212E d4@uv#G4gh
(0)bd f a~x,u,v,y!DG

f d~v2u!

2
1

2E d4@zuvu1u2u3u4u5#G4gh
(0)bdg f~y,z,v,u!Dmn

ek ~u12u4!DG
f l~u2u5!Gn

kal~u4 ,x,u5!DG
gi~v2u2!

3Gm
ei j~u1 ,u3 ,u2!DG

jd~u32z!2
1

2E d4@zuvu1u2u3u4#G4gh
(0)bdg f~y,z,v,u!DG

f e~u2u4!DG
gi~v2u2!

3G4gh
jaei~u3 ,x,u4 ,u2!DG

jd~u32z!2E d4@zuvz1z2z3#Gm
(0)bde~y,u,v !Dmn

e f ~v2z1!Gn
f ha~z1 ,z3 ,x!DG

hd~u2z3!,

~A20!

where an additional minus sign arises from the interchange of the color indicesf andg in the bare four-ghost vertices and fro
the interchange ofj and i in the ghost-gluon vertex.

After performing a Fourier transformation we obtain the respective expression in momentum space

@DG~p!#215@DG
(0)~p!#211~2Nc!

g2

~2p!4E d4qG4gh
(0) DG~q!1S 2Nc

2

2 D 1

2

g4

~2p!8E d4@q1q2#G4gh
(0) Dmn~p2q1!DG~q1!

3Gn~p,q1!DG~q2!Gm~2p1q11q2 ,q2!DG~p2q12q2!2~2Nc
2!

1

2

g4

~2p!8E d4@q1q2#G4gh
(0) DG~q1!

3DG~p2q12q2!G4gh~p,q1 ,q2!DG~q2!1~2Nc!
g2

~2p!4E d4qGm
(0)~p,q!Dmn~p2q! Gn~q,p!DG~q!,

~A21!
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where the color traces have been carried out and the red
vertices defined in Appendix B have been used.

APPENDIX B: DEFINITIONS AND DECOMPOSITIONS

1. Ghost and gluon propagators

The full ghost and gluon propagators in coordinate sp
are defined to be

^ca~x!c̄b~y!&5
dW

dsb~y!ds̄a~x!
5DG

ab~x2y!, ~B1!

^Am
a ~x!An

b~y!&5
dW

dJn
b~y!dJn

a~x!
5Dmn

ab~x2y!. ~B2!

The bare propagators in coordinate space can be easily
rived from the quadratic part of the action,

Squad5E d4x8H 1

2
Am

a F2]2dmn1S 12
1

l D ]m]nGAn
a1 c̄a]2caJ

~B3!

and are given by

@DG
(0)ab~x2y!#215

d2Squad

d c̄a~x!cb~y!
5dab]2d~x2y!, ~B4!

@Dmn
(0)ab~x2y!#215

d2Squad

dAm
a ~x!An

b~y!

5dabS 2]2dmn1S 12
1

l D ]m]nD d~x2y!,

~B5!

with the gauge parameterl. After Fourier transformation
one obtains the corresponding expressions in momen
space:

@DG
(0)ab~p!#2152dabp2 ~B6!

@Dmn
(0)ab~p!#215dabS dmn2S 12

1

l D pmpn

p2 D p2. ~B7!

2. Ghost-gluon vertex

From the ghost gluon part of the action

Sghgl5E d4x8H 2 i S 12
a

2 Dg fabc~]mc̄!Am
c cb

1 i
a

2
g fabcc̄aAm

c ]mcbJ ~B8!
04500
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the tree level ghost gluon vertexGm
abc is easily derived,

Gm
(0)abc~x,y,z!5

d3Sghgl

dAm
a ~x!d c̄b~y!dcc~z!

52g fabcF i S 12
a

2 D @]m
z d4~z2y!#d4~z2x!

1 i
a

2
]m

z @d4~z2y!d4~z2x!#G . ~B9!

Using the momentum conventions of Fig. 5, the Fouri
transformed bare ghost-gluon vertex reads

Gm
(0)abc~k,p,q!5E d4@xyz#Gm

abc~x,y,z!ei (k•x1q•y2p•z)

5g fabc~2p!4d4~k1q2p!

3F S 12
a

2 Dqm1
a

2
pmG , ~B10!

where the abbreviationd4xd4yd4z5: d4@xyz# has been in-
troduced. Note the symmetry of the vertex in the ghost m
menta pm and qm if a51. For convenience we define
reduced vertex functionGm

(0)(p,q) by

Gm
(0)abc~k,p,q!5g fabc~2p!4d4~k1q2p!Gm

(0)~p,q!

Gm
(0)~p,q!5F S 12

a

2 Dqm1
a

2
pmG . ~B11!

The full one-particle irreducible ghost gluon vertex in coo
dinate space is given by

Gm
abc~x,y,z!5

dG

dJm
a ~x!d c̄b~y!dcc~z!

. ~B12!

3. Four-ghost vertex

The four-ghost vertexG4g
abcd is derived from the four-

ghost part of the action,

FIG. 5. Momentum routing for the tree level ghost-gluon a
four-ghost vertices.
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S4gh5E d4x8H a

2 S 12
a

2 D l

2
g2f acef bdec̄ac̄bcccdJ ,

~B13!

which leads to

G4g
(0)abcd~x,y,z,w!5

d4S4gh

d c̄a~x!d c̄b~y!dcc~z!dcd~w!

5
a

2 S 12
a

2 Dlg2f abef cded4~x2y!

3d4~y2z!d4~z2w!. ~B14!

Again using the momentum conventions of Fig. 5, one
tains for the Fourier-transformed bare four-ghost vertex

G4g
(0)abcd~k1 ,k2 ,k3 ,k4!5

d4S4gh

d c̄a~x!d c̄b~y!dcc~z!dcd~w!

5
a

2 S 12
a

2 Dlg2f abef cde~2p!4

3d4~k11k22k32k4!. ~B15!

We define a reduced vertex functionG4g
(0) by

G4g
(0)abcd~k1 ,k2 ,k3 ,k4!5g2f abef cde~2p!4

3d4~k11k22k32k4!G4g
(0)
04500
-

G4g
(0)5

a

2 S 12
a

2 Dl. ~B16!

The full four-ghost vertex in coordinate space is forma
given by

Gabcd~x,y,z!5
dG

d c̄a~x!d c̄b~y!dcc~z!dcd~y!
. ~B17!

4. Decomposition of connected ghost-gluon Green’s function

With the help of the matrix relation

dx21

df
52x21

dx

df
x21, ~B18!

and the identity

d~y2x!dab5E d4z
ds̄b~y!

d c̄d~z!

d c̄d~z!

ds̄a~x!

5E d4z
d2G

d c̄d~z!dcb~y!

d2W

ds̄a~x!dsd~z!
,

~B19!

we decompose the connected ghost-gluon correlation fu
tion, ^Am

a (x) c̄b(y)cc(z)&, in the following way:
e start
mposition
^Am
a ~x!c̄b~y!cc~z!&5

d3W

dJm
a ~x!ds̄b~y!dsc~z!

5
d

dJm
a ~x!

F d2G

d c̄b~y!dcc~z!
G21

5E d4u1

dAn
d~u1!

dJm
a ~x!

d

dAn
d~u1!

F d2G

d c̄b~y!dcc~z!
G21

5E d4@u1u2u3#
d2W

dJm
a ~x!dJn

d~u1!

d2W

ds̄b~y!dse~u2!

d3G

dAn
d~u1!d c̄e~u2!dcf~u3!

d2W

ds̄ f~u3!dsc~z!

5E d4@u1u2u3#Dmn
ad~x2u1!DG

eb~u22y!Gn
de f~u1 ,u2 ,u3!DG

c f~u32z!. ~B20!

Here we used the abbreviationd4@u1u2u3#ªd4u1 d4u2 d4u3 and the definitions of the gluon propagatorDmn , the ghost
propagatorDG , and the ghost-gluon vertexGn given in previous subsections.

5. Decomposition of connected four-ghost Green’s function

Furthermore, we need the decomposition of the four-ghost correlation function into one-particle irreducible parts. W
at a stage where the sources are still present and set them to zero at the end of the derivation. We first give the deco
of the connected ghost-antighost-ghost three-point function
3-18
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^c̄b~y!cc~z!c̄d~w!&5
d3W

ds̄b~y!dsc~z!ds̄d~w!

5
d

ds̄b~y!
F d2G

dsc~z!ds̄d~w!
G21

5E d4u1

dAn
e~u1!

ds̄b~y!

d

dAn
e~u1!

F d2G

dsc~z!ds̄d~w!
G21

5E d4@u1u2u3#
d2W

ds̄b~y!dJn
e~u1!

d2W

dsc~z!ds̄ f~u2!

d3G

dAn
e~u1!dcf~u2!d c̄g~u3!

d2W

dsg~u3!ds̄d~w!
. ~B21!

Then we decompose the connected four-ghost Green’s function:

^ca~x!c̄b~y!cc~z!c̄d~w!&5
d4W

dsa~x!ds̄b~y!dsc~z!ds̄d~w!

5
d

dsa~x!
E d4@u1u2u3#

d2W

ds̄b~y!dJm
e ~u1!

d2W

dsc~z!ds̄ f~u2!

d3G

dAm
e ~u1!dcf~u2!d c̄g~u3!

d2W

dsg~u3!ds̄d~w!
.

~B22!

Carrying out the remaining derivative gives four terms. The two terms where the derivative acts on the second and on
propagator vanish, because the termdW/@ds̄b(y)dJn

e(u1)# vanishes when the sources are set to zero. The contribution w
the derivative acts on the first propagator can be treated using Eq.~B20!. In the expression with the derivative acting on t
vertex we use

2
d2W

ds̄b~y!dJm
e ~u1!

d4G

dsa~x!dAm
e ~u1!dcf~u2!d c̄g~u3!

5
d4G

dsa~x!ds̄b~y!dcf~u2!d c̄g~u3!

5E d4u4

d2W

dsa~x!s̄e~u4!

d4G

dce~u4!ds̄b~y!dcf~u2!d c̄g~u3!

5E d4@u4u5#
d2W

dsa~x!s̄e~u4!

d2W

ds̄b~y!dsh~u5!

d4G

dce~u4!d c̄h~u5!dcf~u2!d c̄g~u3!

52E d4@u4u5#
d2W

dsa~x!s̄e~u4!

d2W

dsh~u5!ds̄b~y!

d4G

d c̄g~u3!d c̄h~u5!dce~u4!dcf~u2!
. ~B23!

Collecting all this together we arrive at

^ca~x!c̄b~y!cc~z!c̄d~w!&5E d4@u1u2u3u4u5u6#H d2W

dJm
e ~u1!dJn

f ~u4!

d2W

dsa~x!ds̄g~u5!

d3G

dAn
f ~u4!dcg~u5!d c̄h~u6!

3
d2W

dsh~u6!ds̄b~y!

d2W

dsc~z!ds̄ i~u2!

d3G

dAm
e ~u1!dci~u2!d c̄ j~u3!

d2W

ds j~u3!ds̄d~w!
J

2E d4@u1u2u3u4u5#H d2W

dsa~x!s̄e~u4!

d2W

dsh~u5!ds̄b~y!

d2W

dsc~z!ds̄ f~u2!

3
d4G

d c̄g~u3!d c̄h~u5!dce~u4!dcf~u2!

d2W

dsg~u3!ds̄d~w!
J . ~B24!
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Interchanging some Grassmann fields in the correlations and using the definitions for the propagators and vertices giv
previous subsections, we arrive at

^c̄b~y!c̄d~w!ca~x!cc~z!&5E d4@u1u2u3u4u5u6#$Dmn
e f ~u12u4!DG

ag~x2u5!Gn
f hg~u4 ,u6 ,u5!DG

hb~u62y!DG
ci~z2u2!

3Gm
e ji~u1 ,u3 ,u2!DG

jd~u32w!%1E d4@u1u2u3u4u5#$DG
ae~x2u4!DG

hb~u52y!

3DG
c f~z2u2!G4gh

hge f~u5 ,u3 ,u4 ,u2!DG
gd~u32w!%, ~B25!

which is the decomposition of the four-ghost correlation used in Appendix A.

APPENDIX C: TENSOR INTEGRALS

The explicit expression for the scalar bubble integralI, defined in Eq.~C1!, can be easily evaluated in Euclidean space-ti
using the Feynman parametrization. With the squared momentax5p2, y5q2, andz5(p2q)2, the result is given by

I ~a,b,p!ªE d4q
1

yazb
~C1!

5p2x22a2b
G~22a!G~22b!G~a1b22!

G~a!G~b!G~42a2b!
. ~C2!

The corresponding tensor integrals can be reduced to scalar integrals by extracting combinations of momentapm and the
symmetric tensordmn according to the symmetry properties of the integrand:

Jm~a,b,p!ªE d4q
qm

yazb
5J1~a,b,p!pm , ~C3!

Kmn~a,b,p!ªE d4q
qmqn

yazb
5K1~a,b,p!pmpn1K2~a,b,p!xdmn , ~C4!

Lmnr~a,b,p!ªE d4q
qmqnqr

yazb
5L1~a,b,p!pmpnpr1L2~a,b,p!x~pmdnr1pndrm1prdmn!, ~C5!

Mmnrs~a,b,p!ªE d4q
qmqnqrqs

yazb

5M1~a,b,p!pmpnprps1M2~a,b,p!x~dmnprps1dmrpnps1dmsprpm1dnrpmps1dnsprpm1drspmpn!

1M3~a,b,p!x2~dmndrs1dmrdns1dmsdrn!. ~C6!

The scalar integrals in these expressions are calculated by contracting them with appropriate tensors, writing all scalar
in terms of squared momentax, y, andz and applying Eq.~C2!. One arrives at
045003-20
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J15p2
G~32a!G~22b! G~a1b22!

G~a!G~b!G~52a2b!
x22a2b, ~C7!

K15p2
G~42a!G~22b!G~a1b22!

G~a!G~b!G~62a2b!
x22a2b, ~C8!

K25p2
G~32a!G~32b!G~a1b22!

G~a!G~b!G~62a2b!

3
1

2~231a1b!
x22a2b, ~C9!

L15p2
G~52a!G~22b!G~a1b22!

G~a!G~b!G~72a2b!
x22a2b, ~C10!

L25p2
G~42a!G~32b!G~a1b22!

G~a!G~b!G~72a2b!

3
1

2~231a1b!
x22a2b, ~C11!

M15p2
G~62a!G~22b!G~a1b22!

G~a!G~b!G~82a2b!
x22a2b, ~C12!

M25p2
G~52a!G~32b!G~a1b22!

G~a!G~b!G~82a2b!

3
1

2~231a1b!
x22a2b, ~C13!

M35p2
G~42a!G~42b!G~a1b22!

G~a!G~b!G~82a2b!

3
1

4~231a1b!~241a1b!
x22a2b. ~C14!

APPENDIX D: EXPRESSIONS FOR SOME DIAGRAMS IN
THE BARE VERTEX APPROXIMATION

In this appendix we give explicitly the expressions f
some diagrams needed for our investigation in the main b
of the paper. All algebraic manipulations have been do
using the programFORM @40#. Our Ansätze for the small
momentum behavior of the ghost dressing functionG, the
transversal gluon dressing functionZ, and the longitudinal
gluon dressing functionL are the power laws

G~x!5Bxb,Z~x!5Axs,L~x!5Cxr, ~D1!

where we have used the abbreviationx5p2.
04500
y
e

We first evaluate the sunset diagram in the ghost equa
given diagrammatically in Fig. 6. With the bare four-gho
vertex given in Eq.~B16! and the abbreviations for th
squared momenta x5p2, y15(q1)2, y25(q2)2, z15(p
2q1)2, andz25(p2q12q2)2 the sunset diagram reads

Usun5
Nc

2g4Z̃4

2~2p!8 Fa2 S 12
a

2 DlG2E d4q1

B~y1!b

xy1

3E d4q2

B2~y2!b~z2!b

y2z2
. ~D2!

The factor 1/x in the first integral stems from the left-han
side of the ghost equation. We now integrate the inner lo
with the help of formula~C2! and obtain

Usun5
Nc

2g4Z̃4B3

512p6 Fa2 S 12
a

2 DlG2 G2~11b!G~22b!

G2~12b!G~212b!

3E d4q1

~y1!b

xy1
~z1!2b, ~D3!

wherez1 is the total squared momentum flowing through t
integrated loop. The second integration is done in the sa
way. We arrive at

Usun5x3b
Nc

2g4Z̃4B3

512p4 Fa2 S 12
a

2 DlG2G3~11b!G~23b21!

G3~12b!G~313b!

5:x3b~U8!sun. ~D4!

As each integration step eats up the two squared momen
the denominators of the integral kernels, only powers ofx to
the anomalous dimensions of the dressing functions in
loop ~here 3b from three ghost propagators! survive. This
mechanism works in the same way for all diagrams and
plains the pattern in Eqs.~41!, ~42!, and ~43! in the main
body of the paper.

Next we evaluate the two contributions in the gluon equ
tion needed for the argument below Eq.~46!. The explicit
expressions for the kernels of two-loop gluon diagrams
rather lengthy but the calculation is done along the sa
lines as in the ghost sunset diagram above. Therefore, we
give the final results,

FIG. 6. Momentum routing for the sunset and for the dress
diagram in the ghost equation.
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VTTTT
squint5x4s

227g4Nc
2Z4A4

4096p4

3
G~2124s!G~1/22s!G~3s!G2~11s!

G~423s!G2~22s!G~3/22s!G~414s!

3224s~2113s!~101s266s2163s3!

3~5143s147s2!

ªx4s~V8!TTTT
squint, ~D5!

WLLL
sun5x3d

g4Nc
2Z4C3

1536p4

1

~113d!

G3~11d!G~123d!

G3~22d!G~313d!
l3

5x3d~W8!LLL
sun . ~D6!

Finally we calculate that part in the dressing diagram
the ghost equation which contains the longitudinal part of
gluon propagator for the special casea50,2. These are the
linear covariant gauges whereL(x)51 by virtue of the
Slavnov-Taylor identity. Replacing dressed vertices w
bare ones, however, violates this identity. We therefore s
with the general expressionL(x)5Cxr and investigate
whether the limitr→0 can be performed consistently. Wit
the momentum assignmentsx5p2, y5q2, and z5k25(p
2q)2 the longitudinal part of the diagram is given by
rt

l,

G.

s,

04500
f
e

rt

UL
dress52

Ncg
2Z̃1l

~2p!4 E d4qqm

kmkn

z2
pn

BybCzr

xy
~D7!

52
Ncg

2Z̃1lBC

~2p!4 E d4qH pm

qm

y12bz22r

2
pmpn

x

qnqm

y12bz22r
2

1

y2bz22r
1

pm

x

qm

y2bz22rJ ,

~D8!

where again the extra factor 1/x stems from the left-hand
side of the ghost DSE. At this stage of the calculation it
not clear whether there are infrared singularities in the lim
r→0. We employ the tensor integrals given in Appendix
usexG(x)5G(11x), and obtain

UL
dress52

Ncg
2Z̃1lBC

16p2
xb1r

G~21b!G~r!G~2b2r!

G~2b!G~22r!G~21r1b!

3
r21r/2

b~21b1r!
. ~D9!

In the limit r→0, this expression is infrared-finite, a
limr→0G(r)r51. We then obtain

UL
dress52

Ncg
2Z̃1lBC

16p2
xb

1

2b~21b!
. ~D10!
.
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