878,666 research outputs found
A Seeded Genetic Algorithm for RNA Secondary Structural Prediction with Pseudoknots
This work explores a new approach in using genetic algorithm to predict RNA secondary structures with pseudoknots. Since only a small portion of most RNA structures is comprised of pseudoknots, the majority of structural elements from an optimal pseudoknot-free structure are likely to be part of the true structure. Thus seeding the genetic algorithm with optimal pseudoknot-free structures will more likely lead it to the true structure than a randomly generated population. The genetic algorithm uses the known energy models with an additional augmentation to allow complex pseudoknots. The nearest-neighbor energy model is used in conjunction with Turner’s thermodynamic parameters for pseudoknot-free structures, and the H-type pseudoknot energy estimation for simple pseudoknots. Testing with known pseudoknot sequences from PseudoBase shows that it out performs some of the current popular algorithms
Genetic CNN
The deep Convolutional Neural Network (CNN) is the state-of-the-art solution
for large-scale visual recognition. Following basic principles such as
increasing the depth and constructing highway connections, researchers have
manually designed a lot of fixed network structures and verified their
effectiveness.
In this paper, we discuss the possibility of learning deep network structures
automatically. Note that the number of possible network structures increases
exponentially with the number of layers in the network, which inspires us to
adopt the genetic algorithm to efficiently traverse this large search space. We
first propose an encoding method to represent each network structure in a
fixed-length binary string, and initialize the genetic algorithm by generating
a set of randomized individuals. In each generation, we define standard genetic
operations, e.g., selection, mutation and crossover, to eliminate weak
individuals and then generate more competitive ones. The competitiveness of
each individual is defined as its recognition accuracy, which is obtained via
training the network from scratch and evaluating it on a validation set. We run
the genetic process on two small datasets, i.e., MNIST and CIFAR10,
demonstrating its ability to evolve and find high-quality structures which are
little studied before. These structures are also transferrable to the
large-scale ILSVRC2012 dataset.Comment: Submitted to CVPR 2017 (10 pages, 5 figures
Improved real-space genetic algorithm for crystal structure and polymorph prediction
Existing genetic algorithms for crystal structure and polymorph prediction can suffer from stagnation during evolution, with a consequent loss of efficiency and accuracy. An improved genetic algorithm is introduced herein which penalizes similar structures and so enhances structural diversity in the population at each generation. This is shown to improve the quality of results found for the theoretical prediction of simple model crystal structures. In particular, this method is demonstrated to find three new zero-temperature phases of the Dzugutov potential that have not been previously reported
A Field Guide to Genetic Programming
xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction --
Representation, initialisation and operators in Tree-based GP --
Getting ready to run genetic programming --
Example genetic programming run --
Alternative initialisations and operators in Tree-based GP --
Modular, grammatical and developmental Tree-based GP --
Linear and graph genetic programming --
Probalistic genetic programming --
Multi-objective genetic programming --
Fast and distributed genetic programming --
GP theory and its applications --
Applications --
Troubleshooting GP --
Conclusions.Contents
xi
1 Introduction
1.1 Genetic Programming in a Nutshell
1.2 Getting Started
1.3 Prerequisites
1.4 Overview of this Field Guide I
Basics
2 Representation, Initialisation and GP
2.1 Representation
2.2 Initialising the Population
2.3 Selection
2.4 Recombination and Mutation Operators in Tree-based
3 Getting Ready to Run Genetic Programming 19
3.1 Step 1: Terminal Set 19
3.2 Step 2: Function Set 20
3.2.1 Closure 21
3.2.2 Sufficiency 23
3.2.3 Evolving Structures other than Programs 23
3.3 Step 3: Fitness Function 24
3.4 Step 4: GP Parameters 26
3.5 Step 5: Termination and solution designation 27
4 Example Genetic Programming Run
4.1 Preparatory Steps 29
4.2 Step-by-Step Sample Run 31
4.2.1 Initialisation 31
4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming
5 Alternative Initialisations and Operators in
5.1 Constructing the Initial Population
5.1.1 Uniform Initialisation
5.1.2 Initialisation may Affect Bloat
5.1.3 Seeding
5.2 GP Mutation
5.2.1 Is Mutation Necessary?
5.2.2 Mutation Cookbook
5.3 GP Crossover
5.4 Other Techniques 32
5.5 Tree-based GP 39
6 Modular, Grammatical and Developmental Tree-based GP 47
6.1 Evolving Modular and Hierarchical Structures 47
6.1.1 Automatically Defined Functions 48
6.1.2 Program Architecture and Architecture-Altering 50
6.2 Constraining Structures 51
6.2.1 Enforcing Particular Structures 52
6.2.2 Strongly Typed GP 52
6.2.3 Grammar-based Constraints 53
6.2.4 Constraints and Bias 55
6.3 Developmental Genetic Programming 57
6.4 Strongly Typed Autoconstructive GP with PushGP 59
7 Linear and Graph Genetic Programming 61
7.1 Linear Genetic Programming 61
7.1.1 Motivations 61
7.1.2 Linear GP Representations 62
7.1.3 Linear GP Operators 64
7.2 Graph-Based Genetic Programming 65
7.2.1 Parallel Distributed GP (PDGP) 65
7.2.2 PADO 67
7.2.3 Cartesian GP 67
7.2.4 Evolving Parallel Programs using Indirect Encodings 68
8 Probabilistic Genetic Programming
8.1 Estimation of Distribution Algorithms 69
8.2 Pure EDA GP 71
8.3 Mixing Grammars and Probabilities 74
9 Multi-objective Genetic Programming 75
9.1 Combining Multiple Objectives into a Scalar Fitness Function 75
9.2 Keeping the Objectives Separate 76
9.2.1 Multi-objective Bloat and Complexity Control 77
9.2.2 Other Objectives 78
9.2.3 Non-Pareto Criteria 80
9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80
9.4 Multi-objective Optimisation via Operator Bias 81
10 Fast and Distributed Genetic Programming 83
10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83
10.2 Reducing Cost of Fitness with Caches 86
10.3 Parallel and Distributed GP are Not Equivalent 88
10.4 Running GP on Parallel Hardware 89
10.4.1 Master–slave GP 89
10.4.2 GP Running on GPUs 90
10.4.3 GP on FPGAs 92
10.4.4 Sub-machine-code GP 93
10.5 Geographically Distributed GP 93
11 GP Theory and its Applications 97
11.1 Mathematical Models 98
11.2 Search Spaces 99
11.3 Bloat 101
11.3.1 Bloat in Theory 101
11.3.2 Bloat Control in Practice 104
III
Practical Genetic Programming
12 Applications
12.1 Where GP has Done Well
12.2 Curve Fitting, Data Modelling and Symbolic Regression
12.3 Human Competitive Results – the Humies
12.4 Image and Signal Processing
12.5 Financial Trading, Time Series, and Economic Modelling
12.6 Industrial Process Control
12.7 Medicine, Biology and Bioinformatics
12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii
12.9 Entertainment and Computer Games 127
12.10The Arts 127
12.11Compression 128
13 Troubleshooting GP
13.1 Is there a Bug in the Code?
13.2 Can you Trust your Results?
13.3 There are No Silver Bullets
13.4 Small Changes can have Big Effects
13.5 Big Changes can have No Effect
13.6 Study your Populations
13.7 Encourage Diversity
13.8 Embrace Approximation
13.9 Control Bloat
13.10 Checkpoint Results
13.11 Report Well
13.12 Convince your Customers
14 Conclusions
Tricks of the Trade
A Resources
A.1 Key Books
A.2 Key Journals
A.3 Key International Meetings
A.4 GP Implementations
A.5 On-Line Resources 145
B TinyGP 151
B.1 Overview of TinyGP 151
B.2 Input Data Files for TinyGP 153
B.3 Source Code 154
B.4 Compiling and Running TinyGP 162
Bibliography 167
Inde
Lower genetic diversity in the limpet Patella caerulea on urban coastal structures compared to natural rocky habitats
Human-made structures are increasingly found in marine coastal habitats. The
aim of the present study was to explore whether urban coastal structures can
affect the genetic variation of hard-bottom species. We conducted a population
genetic analysis on the limpet Patella caerulea sampled in both natural and
artificial habitats along the Adriatic coast. Five microsatellite loci were
used to test for differences in genetic diversity and structure among samples.
Three microsatellite loci showed strong Hardy-Weinberg disequilibrium likely
linked with the presence of null alleles. Genetic diversity was significantly
higher in natural habitat than in artificial habitat. A weak but significant
differentiation over all limpet samples was observed, but not related to the
type of habitat. While the exact causes of the differences in genetic diversity
deserve further investigation, these results clearly point that the expansion
of urban structures can lead to genetic diversity loss at regional scales
Magic structures of helical multi-shell zirconium nanowires
The structures of free-standing zirconium nanowires with 0.62.8 nm in
diameter are systematically studied by using genetic algorithm simulations with
a tight-binding many body potential. Several multi-shell growth sequences with
cylindrical structures are obtained. These multi-shell structures are composed
of coaxial atomic shells with the three- and four-strands helical, centered
pentagonal and hexagonal, and parallel double-chain-core curved surface
epitaxy. Under the same growth sequence, the numbers of atomic strands in
inner- and outer-shell show even-odd coupling and usually differ by five. The
size and structure dependence of angular correlation functions and vibrational
properties of zirconium nanowire are also discussed.Comment: 14 pages, 4 figure
- …
