393,442 research outputs found

    Improving Sampling from Generative Autoencoders with Markov Chains

    Get PDF
    We focus on generative autoencoders, such as variational or adversarial autoencoders, which jointly learn a generative model alongside an inference model. We define generative autoencoders as autoencoders which are trained to softly enforce a prior on the latent distribution learned by the model. However, the model does not necessarily learn to match the prior. We formulate a Markov chain Monte Carlo (MCMC) sampling process, equivalent to iteratively encoding and decoding, which allows us to sample from the learned latent distribution. Using this we can improve the quality of samples drawn from the model, especially when the learned distribution is far from the prior. Using MCMC sampling, we also reveal previously unseen differences between generative autoencoders trained either with or without the denoising criterion

    Text Generation Based on Generative Adversarial Nets with Latent Variable

    Full text link
    In this paper, we propose a model using generative adversarial net (GAN) to generate realistic text. Instead of using standard GAN, we combine variational autoencoder (VAE) with generative adversarial net. The use of high-level latent random variables is helpful to learn the data distribution and solve the problem that generative adversarial net always emits the similar data. We propose the VGAN model where the generative model is composed of recurrent neural network and VAE. The discriminative model is a convolutional neural network. We train the model via policy gradient. We apply the proposed model to the task of text generation and compare it to other recent neural network based models, such as recurrent neural network language model and SeqGAN. We evaluate the performance of the model by calculating negative log-likelihood and the BLEU score. We conduct experiments on three benchmark datasets, and results show that our model outperforms other previous models
    corecore