167,791 research outputs found

    Generating Artificial Data for Private Deep Learning

    Full text link
    In this paper, we propose generating artificial data that retain statistical properties of real data as the means of providing privacy with respect to the original dataset. We use generative adversarial network to draw privacy-preserving artificial data samples and derive an empirical method to assess the risk of information disclosure in a differential-privacy-like way. Our experiments show that we are able to generate artificial data of high quality and successfully train and validate machine learning models on this data while limiting potential privacy loss.Comment: Privacy-Enhancing Artificial Intelligence and Language Technologies, AAAI Spring Symposium Series, 201

    The Dreaming Variational Autoencoder for Reinforcement Learning Environments

    Get PDF
    Reinforcement learning has shown great potential in generalizing over raw sensory data using only a single neural network for value optimization. There are several challenges in the current state-of-the-art reinforcement learning algorithms that prevent them from converging towards the global optima. It is likely that the solution to these problems lies in short- and long-term planning, exploration and memory management for reinforcement learning algorithms. Games are often used to benchmark reinforcement learning algorithms as they provide a flexible, reproducible, and easy to control environment. Regardless, few games feature a state-space where results in exploration, memory, and planning are easily perceived. This paper presents The Dreaming Variational Autoencoder (DVAE), a neural network based generative modeling architecture for exploration in environments with sparse feedback. We further present Deep Maze, a novel and flexible maze engine that challenges DVAE in partial and fully-observable state-spaces, long-horizon tasks, and deterministic and stochastic problems. We show initial findings and encourage further work in reinforcement learning driven by generative exploration.Comment: Best Student Paper Award, Proceedings of the 38th SGAI International Conference on Artificial Intelligence, Cambridge, UK, 2018, Artificial Intelligence XXXV, 201

    LoGAN: Generating Logos with a Generative Adversarial Neural Network Conditioned on color

    Get PDF
    Designing a logo is a long, complicated, and expensive process for any designer. However, recent advancements in generative algorithms provide models that could offer a possible solution. Logos are multi-modal, have very few categorical properties, and do not have a continuous latent space. Yet, conditional generative adversarial networks can be used to generate logos that could help designers in their creative process. We propose LoGAN: an improved auxiliary classifier Wasserstein generative adversarial neural network (with gradient penalty) that is able to generate logos conditioned on twelve different colors. In 768 generated instances (12 classes and 64 logos per class), when looking at the most prominent color, the conditional generation part of the model has an overall precision and recall of 0.8 and 0.7 respectively. LoGAN's results offer a first glance at how artificial intelligence can be used to assist designers in their creative process and open promising future directions, such as including more descriptive labels which will provide a more exhaustive and easy-to-use system.Comment: 6 page, ICMLA1
    corecore