240,108 research outputs found
Spatial Smoothing Techniques for the Assessment of Habitat Suitability
Precise knowledge about factors influencing the habitat suitability of a certain species forms the basis for the implementation of effective programs to conserve biological diversity. Such knowledge is frequently gathered from studies relating abundance data to a set of influential variables in a regression setup. In particular, generalised linear models are used to analyse binary presence/absence data or counts of a certain species at locations within an observation area. However, one of the key assumptions of generalised linear models, the independence of the observations is often violated in practice since the points at which the observations are collected are spatially aligned. While several approaches have been developed to analyse and account for spatial correlation in regression models with normally distributed responses, far less work has been done in the context of generalised linear models. In this paper, we describe a general framework for semiparametric spatial generalised linear models that allows for the routine analysis of non-normal spatially aligned regression data. The approach is utilised for the analysis of a data set of synthetic bird species in beech forests, revealing that ignorance of spatial dependence actually may lead to false conclusions in a number of situations
mplot: An R Package for Graphical Model Stability and Variable Selection Procedures
The mplot package provides an easy to use implementation of model stability
and variable inclusion plots (M\"uller and Welsh 2010; Murray, Heritier, and
M\"uller 2013) as well as the adaptive fence (Jiang, Rao, Gu, and Nguyen 2008;
Jiang, Nguyen, and Rao 2009) for linear and generalised linear models. We
provide a number of innovations on the standard procedures and address many
practical implementation issues including the addition of redundant variables,
interactive visualisations and approximating logistic models with linear
models. An option is provided that combines our bootstrap approach with glmnet
for higher dimensional models. The plots and graphical user interface leverage
state of the art web technologies to facilitate interaction with the results.
The speed of implementation comes from the leaps package and cross-platform
multicore support.Comment: 28 pages, 9 figure
Effect Displays in R for Generalised Linear Models
This paper describes the implementation in R of a method for tabular or graphical display of terms in a complex generalised linear model. By complex, I mean a model that contains terms related by marginality or hierarchy, such as polynomial terms, or main effects and interactions. I call these tables or graphs effect displays. Effect displays are constructed by identifying high-order terms in a generalised linear model. Fitted values under the model are computed for each such term. The lower-order "relatives" of a high-order term (e.g., main effects marginal to an interaction) are absorbed into the term, allowing the predictors appearing in the high-order term to range over their values. The values of other predictors are fixed at typical values: for example, a covariate could be fixed at its mean or median, a factor at its proportional distribution in the data, or to equal proportions in its several levels. Variations of effect displays are also described, including representation of terms higher-order to any appearing in the model.
A Generalised Quantifier Theory of Natural Language in Categorical Compositional Distributional Semantics with Bialgebras
Categorical compositional distributional semantics is a model of natural
language; it combines the statistical vector space models of words with the
compositional models of grammar. We formalise in this model the generalised
quantifier theory of natural language, due to Barwise and Cooper. The
underlying setting is a compact closed category with bialgebras. We start from
a generative grammar formalisation and develop an abstract categorical
compositional semantics for it, then instantiate the abstract setting to sets
and relations and to finite dimensional vector spaces and linear maps. We prove
the equivalence of the relational instantiation to the truth theoretic
semantics of generalised quantifiers. The vector space instantiation formalises
the statistical usages of words and enables us to, for the first time, reason
about quantified phrases and sentences compositionally in distributional
semantics
Projection estimators for autoregressive panel data models
In this paper we explore a new approach to estimation for autoregressive panel data models, based on projecting the unobserved individual effects on the vector of observations on the lagged dependent variable. This approach yields estimators which coincide with known generalised method of moments (GMM) estimators for models where stationarity is not imposed on the initial conditions and for models which satisfy mean stationarity. Our approach allows us to obtain a simple linear estimator for models which satisfy covariance stationarity, which although not fully efficient performs very well in simulations.
- …
