8,029 research outputs found

    Spacetime Emergence and General Covariance Transmutation

    Get PDF
    Spacetime emergence refers to the notion that classical spacetime "emerges" as an approximate macroscopic entity from a non-spatio-temporal structure present in a more complete theory of interacting fundamental constituents. In this article, we propose a novel mechanism involving the "soldering" of internal and external spaces for the emergence of spacetime and the twin transmutation of general covariance. In the context of string theory, this mechanism points to a critical four dimensional spacetime background.Comment: 11 pages, v2: version to appear in MPL

    General covariance, and supersymmetry without supersymmetry

    Get PDF
    An unusual four-dimensional generally covariant and supersymmetric SU(2) gauge theory is described. The theory has propagating degrees of freedom, and is invariant under a local (left-handed) chiral supersymmetry, which is half the supersymmetry of supergravity. The Hamiltonian 3+1 decomposition of the theory reveals the remarkable feature that the local supersymmetry is a consequence of Yang-Mills symmetry, in a manner reminiscent of how general coordinate invariance in Chern-Simons theory is a consequence of Yang-Mills symmetry. It is possible to write down an infinite number of conserved currents, which strongly suggests that the theory is classically integrable. A possible scheme for non-perturbative quantization is outlined. This utilizes ideas that have been developed and applied recently to the problem of quantizing gravity.Comment: 17 pages, RevTeX, two minor errors correcte

    Quantum Determinism from Quantum General Covariance

    Full text link
    The requirement of general covariance of quantum field theory (QFT) naturally leads to quantization based on the manifestly covariant De Donder-Weyl formalism. To recover the standard noncovariant formalism without violating covariance, fields need to depend on time in a specific deterministic manner. This deterministic evolution of quantum fields is recognized as a covariant version of the Bohmian hidden-variable interpretation of QFT.Comment: 6 pages, revised, new references, Honorable Mention of the Gravity Research Foundation 2006 Essay Competition, version to appear in Int. J. Mod. Phys.

    Extending general covariance: Moyal-type noncommutative manifolds

    Full text link
    In the Hamiltonian formulation of general relativity, Einstein's equation is replaced by a set of four constraints. Classically, the constraints can be identified with the generators of the hypersurface-deformation Lie algebroid (HDA) that belongs to the groupoid of finite evolutions in space-time. Taken over to deformed general relativity, this connection allows one to study possible Drinfeld twists of space-time diffeomorphisms with Hopf-algebra techniques. After a review of noncommutative differential structures, two cases --- twisted diffeomorphisms with standard action and deformed (or ⋆\star-) diffeomorphisms with deformed action --- are considered in this paper. The HDA of twisted diffeomorphisms agrees with the classical one, while the HDA obtained from deformed diffeomorphisms is modified due to the explicit presence of ⋆\star-products in the brackets. The results allow one to distinguish between twisted and deformed symmetries, and they indicate that the latter should be regarded as the relevant symmetry transformations for noncommutative manifolds. The algebroid brackets maintain the same general structure regardless of space-time noncommutativity, but they still show important consequences of non-locality

    Two dimensional general covariance from three dimensions

    Get PDF
    A 3d generally covariant field theory having some unusual properties is described. The theory has a degenerate 3-metric which effectively makes it a 2d field theory in disguise. For 2-manifolds without boundary, it has an infinite number of conserved charges that are associated with graphs in two dimensions and the Poisson algebra of the charges is closed. For 2-manifolds with boundary there are additional observables that have a Kac-Moody Poisson algebra. It is further shown that the theory is classically integrable and the general solution of the equations of motion is given. The quantum theory is described using Dirac quantization, and it is shown that there are quantum states associated with graphs in two dimensions.Comment: 10 pages (Latex), Alberta-Thy-19-9

    General Covariance in Algebraic Quantum Field Theory

    Full text link
    In this review we report on how the problem of general covariance is treated within the algebraic approach to quantum field theory by use of concepts from category theory. Some new results on net cohomology and superselection structure attained in this framework are included.Comment: 61 pages, 3 figures, LaTe

    General covariance of the non-abelian DBI-action

    Get PDF
    In this paper we study the action for N D0-branes in a curved background. In particular, we focus on the meaning of space-time diffeomorphism invariance. For a single D-brane, diffeomorphism invariance acts in a naive way on the world-volume fields, but for multiple D-branes, the meaning of diffeomorphism invariance is much more obscure. The problem goes beyond the determination of an ordering of the U(N)-valued fields, because one can show that there is no lift of ordinary diffeomorphisms to matrix-valued diffeomorphisms. On the other hand, the action can presumably be constructed from perturbative string theory calculations. Based on the general characteristics of such calculations we determine a set of constraints on the action for N D0-branes, that ensure space-time covariance. These constraints can be solved order by order, but they are insufficient to determine the action completely. All solutions to the constraints obey the axioms of D-geometry. Moreover the action must contain new terms. This exhibits clearly that the answer is more than a suitable ordering of the action of a single D0 brane.Comment: latex, 38 page
    • …
    corecore