1,622,866 research outputs found
Spectral analysis of gene expression profiles using gene networks
Microarrays have become extremely useful for analysing genetic phenomena, but
establishing a relation between microarray analysis results (typically a list
of genes) and their biological significance is often difficult. Currently, the
standard approach is to map a posteriori the results onto gene networks to
elucidate the functions perturbed at the level of pathways. However,
integrating a priori knowledge of the gene networks could help in the
statistical analysis of gene expression data and in their biological
interpretation. Here we propose a method to integrate a priori the knowledge of
a gene network in the analysis of gene expression data. The approach is based
on the spectral decomposition of gene expression profiles with respect to the
eigenfunctions of the graph, resulting in an attenuation of the high-frequency
components of the expression profiles with respect to the topology of the
graph. We show how to derive unsupervised and supervised classification
algorithms of expression profiles, resulting in classifiers with biological
relevance. We applied the method to the analysis of a set of expression
profiles from irradiated and non-irradiated yeast strains. It performed at
least as well as the usual classification but provides much more biologically
relevant results and allows a direct biological interpretation
Generalized gene co-expression analysis via subspace clustering using low-rank representation
BACKGROUND:
Gene Co-expression Network Analysis (GCNA) helps identify gene modules with potential biological functions and has become a popular method in bioinformatics and biomedical research. However, most current GCNA algorithms use correlation to build gene co-expression networks and identify modules with highly correlated genes. There is a need to look beyond correlation and identify gene modules using other similarity measures for finding novel biologically meaningful modules.
RESULTS:
We propose a new generalized gene co-expression analysis algorithm via subspace clustering that can identify biologically meaningful gene co-expression modules with genes that are not all highly correlated. We use low-rank representation to construct gene co-expression networks and local maximal quasi-clique merger to identify gene co-expression modules. We applied our method on three large microarray datasets and a single-cell RNA sequencing dataset. We demonstrate that our method can identify gene modules with different biological functions than current GCNA methods and find gene modules with prognostic values.
CONCLUSIONS:
The presented method takes advantage of subspace clustering to generate gene co-expression networks rather than using correlation as the similarity measure between genes. Our generalized GCNA method can provide new insights from gene expression datasets and serve as a complement to current GCNA algorithms
Partition Decoupling for Multi-gene Analysis of Gene Expression Profiling Data
We present the extention and application of a new unsupervised statistical
learning technique--the Partition Decoupling Method--to gene expression data.
Because it has the ability to reveal non-linear and non-convex geometries
present in the data, the PDM is an improvement over typical gene expression
analysis algorithms, permitting a multi-gene analysis that can reveal
phenotypic differences even when the individual genes do not exhibit
differential expression. Here, we apply the PDM to publicly-available gene
expression data sets, and demonstrate that we are able to identify cell types
and treatments with higher accuracy than is obtained through other approaches.
By applying it in a pathway-by-pathway fashion, we demonstrate how the PDM may
be used to find sets of mechanistically-related genes that discriminate
phenotypes.Comment: Revise
Gene Co-expression Network and Copy Number Variation Analyses Identify Transcription Factors Associated With Multiple Myeloma Progression
Multiple myeloma (MM) has two clinical precursor stages of disease: monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). However, the mechanism of progression is not well understood. Because gene co-expression network analysis is a well-known method for discovering new gene functions and regulatory relationships, we utilized this framework to conduct differential co-expression analysis to identify interesting transcription factors (TFs) in two publicly available datasets. We then used copy number variation (CNV) data from a third public dataset to validate these TFs. First, we identified co-expressed gene modules in two publicly available datasets each containing three conditions: normal, MGUS, and SMM. These modules were assessed for condition-specific gene expression, and then enrichment analysis was conducted on condition-specific modules to identify their biological function and upstream TFs. TFs were assessed for differential gene expression between normal and MM precursors, then validated with CNV analysis to identify candidate genes. Functional enrichment analysis reaffirmed known functional categories in MM pathology, the main one relating to immune function. Enrichment analysis revealed a handful of differentially expressed TFs between normal and either MGUS or SMM in gene expression and/or CNV. Overall, we identified four genes of interest (MAX, TCF4, ZNF148, and ZNF281) that aid in our understanding of MM initiation and progression
A genomic analysis and transcriptomic atlas of gene expression in Psoroptes ovis reveals feeding- and stage-specific patterns of allergen expression
Background: Psoroptic mange, caused by infestation with the ectoparasitic mite, Psoroptes ovis, is highly contagious, resulting in intense pruritus and represents a major welfare and economic concern for the livestock industry Worldwide. Control relies on injectable endectocides and organophosphate dips, but concerns over residues, environmental contamination, and the development of resistance threaten the sustainability of this approach, highlighting interest in alternative control methods. However, development of vaccines and identification of chemotherapeutic targets is hampered by the lack of P. ovis transcriptomic and genomic resources.
Results: Building on the recent publication of the P. ovis draft genome, here we present a genomic analysis and transcriptomic atlas of gene expression in P. ovis revealing feeding- and stage-specific patterns of gene expression, including novel multigene families and allergens. Network-based clustering revealed 14 gene clusters demonstrating either single- or multi-stage specific gene expression patterns, with 3075 female-specific, 890 male-specific and 112, 217 and 526 transcripts showing larval, protonymph and tritonymph specific-expression, respectively. Detailed analysis of P. ovis allergens revealed stage-specific patterns of allergen gene expression, many of which were also enriched in "fed" mites and tritonymphs, highlighting an important feeding-related allergenicity in this developmental stage. Pair-wise analysis of differential expression between life-cycle stages identified patterns of sex-biased gene expression and also identified novel P. ovis multigene families including known allergens and novel genes with high levels of stage-specific expression.
Conclusions: The genomic and transcriptomic atlas described here represents a unique resource for the acarid-research community, whilst the OrcAE platform makes this freely available, facilitating further community-led curation of the draft P. ovis genome
Genetic Variation and Antioxidant Response Gene Expression in the Bronchial Airway Epithelium of Smokers at Risk for Lung Cancer
Prior microarray studies of smokers at high risk for lung cancer have demonstrated that heterogeneity in bronchial airway epithelial cell gene expression response to smoking can serve as an early diagnostic biomarker for lung cancer. As a first step in applying functional genomic analysis to population studies, we have examined the relationship between gene expression variation and genetic variation in a central molecular pathway (NRF2-mediated antioxidant response) associated with smoking exposure and lung cancer. We assessed global gene expression in histologically normal airway epithelial cells obtained at bronchoscopy from smokers who developed lung cancer (SC, n=20), smokers without lung cancer (SNC, n=24), and never smokers (NS, n=8). Functional enrichment analysis showed that the NRF2-mediated, antioxidant response element (ARE)-regulated genes, were significantly lower in SC, when compared with expression levels in SNC. Importantly, we found that the expression of MAFG (a binding partner of NRF2) was correlated with the expression of ARE genes, suggesting MAFG levels may limit target gene induction. Bioinformatically we identified single nucleotide polymorphisms (SNPs) in putative ARE genes and to test the impact of genetic variation, we genotyped these putative regulatory SNPs and other tag SNPs in selected NRF2 pathway genes. Sequencing MAFG locus, we identified 30 novel SNPs and two were associated with either gene expression or lung cancer status among smokers. This work demonstrates an analysis approach that integrates bioinformatics pathway and transcription factor binding site analysis with genotype, gene expression and disease status to identify SNPs that may be associated with individual differences in gene expression and/or cancer status in smokers. These polymorphisms might ultimately contribute to lung cancer risk via their effect on the airway gene expression response to tobacco-smoke exposure.Intramural Research Program of the National Institute of Environmental Health Sciences; National Institutes of Health (Z01 ES100475, U01ES016035, R01CA124640
Consensus clustering and functional interpretation of gene-expression data
Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introduce consensus clustering, which provides such an advantage. When coupled with a statistically based gene functional analysis, our method allowed the identification of novel genes regulated by NFκB and the unfolded protein response in certain B-cell lymphomas
- …
