81,246 research outputs found
Approximating a similarity matrix by a latent class model: A reappraisal of additive fuzzy clustering
Let Q be a given n×n square symmetric matrix of nonnegative elements between 0 and 1, similarities. Fuzzy clustering results in fuzzy assignment of individuals to K clusters. In additive fuzzy clustering, the n×K fuzzy memberships matrix P is found by least-squares approximation of the off-diagonal elements of Q by inner products of rows of P. By contrast, kernelized fuzzy c-means is not least-squares and requires an additional fuzziness parameter. The aim is to popularize additive fuzzy clustering by interpreting it as a latent class model, whereby the elements of Q are modeled as the probability that two individuals share the same class on the basis of the assignment probability matrix P. Two new algorithms are provided, a brute force genetic algorithm (differential evolution) and an iterative row-wise quadratic programming algorithm of which the latter is the more effective. Simulations showed that (1) the method usually has a unique solution, except in special cases, (2) both algorithms reached this solution from random restarts and (3) the number of clusters can be well estimated by AIC. Additive fuzzy clustering is computationally efficient and combines attractive features of both the vector model and the cluster mode
INITIAL APPLICATIONS OF FUZZY SET PROCEDURES FOR ESTIMATION OF EXPORT BASE EMPLOYMENT
Current export base methods that calculate basic and non-basic employment are too restrictive because they fail to account for uncertainty involved in the process. This paper shows the assignment of industries as either basic or non-basic by the location quotient procedure does not consistently represent the data for Nevada counties. Using fuzzy set procedures and membership functions in conjunction with the location quotient allow more flexibility in terms of matching the data for each industry in the region of interest. Using fuzzy set procedures we determine the proportion of employment that is basic and non-basic in nine non-governmental industries.Labor and Human Capital,
A General Framework for Representing, Reasoning and Querying with Annotated Semantic Web Data
We describe a generic framework for representing and reasoning with annotated
Semantic Web data, a task becoming more important with the recent increased
amount of inconsistent and non-reliable meta-data on the web. We formalise the
annotated language, the corresponding deductive system and address the query
answering problem. Previous contributions on specific RDF annotation domains
are encompassed by our unified reasoning formalism as we show by instantiating
it on (i) temporal, (ii) fuzzy, and (iii) provenance annotations. Moreover, we
provide a generic method for combining multiple annotation domains allowing to
represent, e.g. temporally-annotated fuzzy RDF. Furthermore, we address the
development of a query language -- AnQL -- that is inspired by SPARQL,
including several features of SPARQL 1.1 (subqueries, aggregates, assignment,
solution modifiers) along with the formal definitions of their semantics
Fuzzy linear assignment problem: an approach to vehicle fleet deployment
This paper proposes and examines a new approach using fuzzy logic to vehicle fleet deployment. Fleet deployment is viewed as a fuzzy linear assignment problem. It assigns each travel request to an available service vehicle through solving a linear assignment matrix of defuzzied cost entries. Each cost entry indicates the cost value of a travel request that "fuzzily aggregates" multiple criteria in simple rules incorporating human dispatching expertise. The approach is examined via extensive simulations anchored in a representative scenario of taxi deployment, and compared to the conventional case of using only distances (each from the taxi position to the source point and finally destination point of a travel request) as cost entries. Discussion in the context of related work examines the performance and practicality of the proposed approach
- …
