55,889 research outputs found
Elastoplastic stress analysis of functionally graded disc under internal pressure– complas XII
The study deals with elastoplastic stress analysis of a hollow disk made of functionally graded materials (FGMs) subjected to an internal pressure. The material properties of disc are assumed to vary radially according to power law function, but Poisson’s ratio is taken constant. Small deformations and a state of plane stress are presumed, and the analysis of disk is based on Von-Mises yield criterion. The materials are assumed to be linear strain hardening, isotropic and not be affected by temperature. Variation of stresses and displacements according to gradient parameters are investigated by using analytical and finite element method. The results show that gradient parameters have an important role in determining the elastoplastic stress of functionally graded disc
Interfacial adhesion of laser clad functionally graded materials
Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-situ microstructural observations during straining in a field-emission gun environmental scanning electron microscopy reveal different failure modes of the FGMs and substrate. Mapping of strain fields using digital imaging correlation shows a gradual transition of deformation over the interface region and softening effects in the heat-affected zones of the FGM tracks. The strengthening of the FGM is dominated by the size of the Al halos around the particles, in accordance with a dislocation pile-up model.
MULTILAYER COATINGS Ti/TiN Cr/CrN AND W/WN DEPOSITED BY MAGNETRON SPUTTERING FOR IMPROVEMENT OF ADHESION TO BASE MATERIALS
The paper deals with evaluation of single and multilayer layer PVD coatings based on Cr and Ti widely used in tool application. Additionally, W and WN based coating which are not so widespread were designed and deposited as functionally graded material. The coatings properties were evaluated from the point of view of hardness and adhesion. The hardness measuring was carried out using nanoindentation method. The scratch test was performed to test adhesion. Moreover, the presence of metallic interlayer in functionally graded materials further increases the coating adhesion by gradually approaching its composition to the substrate. Coatings consisting of W and WN have showed very good adhesion. With regard to the results of the scratch test, the multilayer coatings of CrN, TiN and WN have increased adhesion and can be assumed to have their protective function improved. Results will be appliedin development of functionally graded layers for functionally graded materials
Recommended from our members
Materials Design - Towards a Functionally Graded Electrical Conductor
In this study, we discuss functionally graded (FG) materials as pulsed electrical
conductors. These conductors can be designed to be more efficient and longer lasting by
applying numerical modeling tools. One focus is on limiting the thermal fatigue damage
in conductors caused by very high temperatures that develop during pulse heating. We
have quantified the effect of various grading functions on the pulsed Joule heating
generated and the peak temperature experienced in the conductors of an electromagnetic
launcher by using a 1D numerical code and a state of the art 3D coupled finite element
code, EMAP3D. Because FG materials incorporate applications-tailored compositions,
structures, and dimensions, smoothly graded properties in lateral and longitudinal cross
sections are obtainable. The Solid Freeform Fabrication (SFF) processing approach
allows for architectures with a series of important features. These features include the
selective use of high efficiency conducting materials in the core, preconditioned
conductor/structure interfaces, and built-in features for enhanced cooling where
necessary.Mechanical Engineerin
Multipole polarizability of a graded spherical particle
We have studied the multipole polarizability of a graded spherical particle
in a nonuniform electric field, in which the conductivity can vary radially
inside the particle. The main objective of this work is to access the effects
of multipole interactions at small interparticle separations, which can be
important in non-dilute suspensions of functionally graded materials. The
nonuniform electric field arises either from that applied on the particle or
from the local field of all other particles. We developed a differential
effective multipole moment approximation (DEMMA) to compute the multipole
moment of a graded spherical particle in a nonuniform external field. Moreover,
we compare the DEMMA results with the exact results of the power-law graded
profile and the agreement is excellent. The extension to anisotropic DEMMA will
be studied in an Appendix.Comment: LaTeX format, 2 eps figures, submitted for publication
Functionally Graded Media
The notions of uniformity and homogeneity of elastic materials are reviewed
in terms of Lie groupoids and frame bundles. This framework is also extended to
consider the case Functionally Graded Media, which allows us to obtain some
homogeneity conditions.Comment: 20 pages, 5 figure
Microstructure-based modeling of elastic functionally graded materials: One dimensional case
Functionally graded materials (FGMs) are two-phase composites with
continuously changing microstructure adapted to performance requirements.
Traditionally, the overall behavior of FGMs has been determined using local
averaging techniques or a given smooth variation of material properties.
Although these models are computationally efficient, their validity and
accuracy remain questionable, since a link with the underlying microstructure
(including its randomness) is not clear. In this paper, we propose a modeling
strategy for the linear elastic analysis of FGMs systematically based on a
realistic microstructural model. The overall response of FGMs is addressed in
the framework of stochastic Hashin-Shtrikman variational principles. To allow
for the analysis of finite bodies, recently introduced discretization schemes
based on the Finite Element Method and the Boundary Element Method are employed
to obtain statistics of local fields. Representative numerical examples are
presented to compare the performance and accuracy of both schemes. To gain
insight into similarities and differences between these methods and to minimize
technicalities, the analysis is performed in the one-dimensional setting.Comment: 33 pages, 14 figure
- …
