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Abstract. The study deals with elastoplastic stress analysis of a hollow disk made of 
functionally graded materials (FGMs) subjected to an internal pressure. The material 
properties of disc are assumed to vary radially according to power law function, but Poisson’s 
ratio is taken constant. Small deformations and a state of plane stress are presumed, and the 
analysis of disk is based on Von-Mises yield criterion. The materials are assumed to be linear 
strain hardening, isotropic and not be affected by temperature. Variation of stresses and 
displacements according to gradient parameters are investigated by using analytical and finite 
element method. The results show that gradient parameters have an important role in 
determining the elastoplastic stress of functionally graded disc.  

 
 
1 INTRODUCTION 

Functionally graded materials (FGMs) are provided a spatial variation in composition and 
properties, as an alternative to homogenous a bi-material interface structures which are used 
in a broad array of applications that range from aerospace structures and cutting tools to 
electronics and biomedical engineering [1]. Here, we investigate a new application of FGM 
for designing pressured discs which are used in rotors, turbines, jet engines, flywheels, 
automobiles, pumps, compressors and many other applications [2].   

The analysis of elastic stresses distribution has been investigated by many authors and 
researchers. However, this elastoplastic and residual stresses distribution does not exist for 
pressured disc. Hassani et al.[2, 3]obtained the analytical solutions of rotating annular disk 
with non-uniform thickness and material properties subjected to thermo-elasto-plastic 
loadings is solved using homotopy analysis method (HAM) as an analytic solution and also 
finite element method. Widjaja et al. [4] using finite element analysis (FEA) was performed to 
investigate the effects of different cooling rates and substrate preheating process on the 
residual stress distribution. The results show that lower cooling rate and substrate preheating 
process reduce stresses within duplex coating. Nie and Batra [5] use the Airy stress function 
to derive exact solutions for plane strain deformations of a functionally graded hollow 
cylinder with the inner and the outer surfaces subjected to different boundary conditions, and 
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the cylinder composed of an isotropic and incompressible linear elastic material. They 
investigated tailoring material properties for producing the desired stress distribution in a 
given body and under prescribed boundary conditions. Kurşun [6] studied elastoplastic stress 
analysis of functionally graded disc subjected mechanical, thermal and thermomechanical 
loads.  He obtained elastic, elastoplastic and residual stress distribution along the radius.  

In this paper, annular disk with non-uniform material properties subjected to internal 
pressure load is solved using the infinitesimal deformation theory of elasticity as an analytic 
solution and also finite element method. Results obtained both analytical and numerical 
solutions are found very well consistent with each other. 

2 ELASTIC AND PLASTIC SOLUTIONS 
The governing differential equation of equilibrium for an internal pressure disc is 

0rrd
dr r

  
   

(1) 

Due to the rotational symmetry, the strain-displacement relations are given by 

,r
du u
dr r    

(2) 

where u is the displacement component in the radial direction. The strain compatibility 
equation is 

 r
d r
dr    

(3) 

The total radial and hoop strains of the rotating disc are 

1 ( )
( )

tot p
r r rE r        

(4) 

1 ( )
( )

tot p
rE r         

(5) 

where r  and   are the strains in radial and tangential directions,  respectively. The equation 
equilibrium (1) is satisfied by the stress function F defined as 

,r
F dF
r dr    

(6) 

Substituting equation (5) into equation (4) and (5) after using equation (4) and (5) into 
compatibility equation (3) yields the following governing equation 

2
2

2

( ) ( )1 1 ( )
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p
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dd F E r dF E rr r r r F E r r
dr E r dr E r dr
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          
     

 
(7) 

In the elastic region of an internal pressure disc in which 0p p
r    , equation (7) reduces to 
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2
2

2

( ) ( )1 1 0
( ) ( )

d F E r dF E rr r r r F
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(8) 

In relation to Hencky’s deformation theory that the plastic strain tensor is related to the 
deviatoric part of stress tensor is [17]  

p
ij ijS   (9) 

in which Sij is the deviatoric stress tensor and  is a scalar valued function which are obtained 
as 

1
3ij ij kk ijS S    

(10) 

3
2

p
eq

eq





  

(11) 

here p
eq  is the equivalent plastic strain which depends on the material model used. In this 

study, an elastic-linear strain hardening model is used for modeling the stress–strain curve of 
the disk material. By using this model strains are obtained as 

 

                                                        for ( )  
( )
( ) 1 ( )                       for ( )      
( ) ( )

y

y
y y
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r
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 
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(12) 

where E(r), σ(r)y, and Et(r) are the elasticity modules, yield strength and tangent modulus of the 
material, respectively. By using equation (9), the radial and hoop plastic strains of the disc can 
be calculated as 
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(14) 

the equivalent plastic strain p
eq  is 

 
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(15) 
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In which e
eq    is the equivalent elastic strain. In the plastic zone of the disk, p

eq  derived from 
equation (15) and substituting into the equations (13) and (14) results in 
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(17) 

when equations (16) and (17) are substituted into equation (7), differential equation of the 
elastic-linear strain hardening disc in the plastic region. 
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(18) 

Now suppose that 

( ) 0 ( ) 0 ( ),   ,   
n
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(19) 

here n,   and    are gradient parameters, and E0, Et0 and o are nominal modulus of 
elasticity, tangent modulus and yield strength of the material, respectively. If gradient 
parameters are zero, materials will be homogeneous. When substituting equation (19) into 
equation (8), Airy stress function in elastic region can be obtained as 

2 2
1 2

n k n k

F C r C r
 

   
(20) 

C1 and C2 integration constants can be obtained from boundary conditions which its inner 
surface subject to an internal pressure and outer surface is free.  

2
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(22) 

Here, P is an internal pressure of disc. A closed-form solution of nonlinear equation (18) with 
variable coefficients seems to be difficult if not impossible to obtain. Thus, in this study a 
code is written in ANSYS Parametric Design Language (APDL) for the solution of nonlinear 
equation (21) is attempted. 

3 RESULTS AND DISCUSSION 
In this study, elastic and elastoplastic stress analysis are carried out on a circular disc made 

of functionally graded materials (FGM) by using an analytical and numerical solution. For 
numerical method, the disc is modeled and meshed by an axisymmetric element (Plane42 2D 
Structural Solid) in ANSYS®, which is a commercial finite element program [7]. A code is 
written in ANSYS Parametric Design Language (APDL) regarding to power law functions. In 
this code, it is considered that elasticity, tangent modules and yield strength of the materials 
vary according to equation (19). Inner and outer radii of disc are ri=40mm and ro=100mm 
with plane stress assumption, respectively. Mechanical properties of the disc such as elasticity 
modulus, tangential modulus and yield strength are given in Table 1. 

 

Table 1: Mechanical properties of the disc 

Eo(GPa) Eto(GPa) σo(MPa) 
200 50 300 

 
 
In Figure 2, the variations of radial and circumferential stresses for FGM disc subjected to 

an internal pressure of disc are presented. It is clear from this figure that, the analytical and 
numerical results are consistent very well with each other. In Figure 2 (a), Radial stress is 
compressive along the radius, and equal to internal pressure at inner and equal to zero at outer 
surface and it is the highest value for the gradient parameter equal to 1, the lowest value for 
homogenous material. 

The circumferential stresses decrease gradually from inner to outer surface, as seen in 
Figure 2 (b). They take maximum values at inner surface and minimum values at outer 
surface as tensile. The figure 2 (b) suggests that the circumferential stresses for an internal 
pressure discs are smaller compared homogeneous material. For gradient parameters, zero 
values represent homogeneous material, but others as 0.25, 0.5, 0.75 and 1, represent FGMs. 
It is also seen that increment of gradient parameters uniform the circumferential stresses. 
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(a) 

 
(b) 

 
Figure 1: Elastic stress distribution along the radius for different gradient parameters, (a) 

radial stress and (b) circumferential stress, P=100 MPa. 
 
Elastoplastic solution is obtained using by finite element method, ANSYS®. The materials 

are assumed to be linear strain hardening. Radial and circumferential elastoplastic stresses 
distribution for different gradient parameters at the disc subjected to an internal pressure, 
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P=200 MPa are shown in Figure 2 (a) and (b). In Figure 4 (a), the maximum radial 
elastoplastic stresses are found for FGMs n=1, and the minimum is found for homogenous 
material n=0, as seen Figure 4 (a).    

 

 
(a) 

 
(b) 

Figure 2: Elastoplastic stress distribution along the radius for different gradient parameters, 
(a) radial stress and (b) circumferential stress, P=200 MPa. 
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As it can be seen from Figure 4 (b), yield starts at inner surface of the disc for all gradient 
parameters. Plastic region is found maximum for maximum gradient parameter, and it is 
decreased at what time the gradient parameter is decreased as well. The circumferential 
elastoplastic stresses are found maximum at inner surface by means of tensile.  

 
(a) 

 
(b) 

Figure 3: Residual stress distribution along the radius for different gradient parameters, (a) 
radial stress and (b) circumferential stress, P=200 MPa. 
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Residual stresses are determined by superposing a completely elastic system on the stress 
system obtained from the elastoplastic solution. As seen Figure 3, disc can be divided in two 
regions as first plastic region and second elastic region from inner to outer surface. Residual 
radial stresses are zero at inner and outer radius and compressive at left behind of the disc, as 
seen Figure 3 (a). It is clear from this figure that radial and circumferential stresses are the 
highest value for the highest gradient parameter.   

4 CONCLUSIONS 
- Gradient parameters effect the variation of stresses along the radius of the disc.  
- Plastic yielding starts first at the inner surface where σθ is the greatest. 
- The magnitude of the plastic flow is found to be highest at the inner surface for the 

highest gradient parameter n=1. 

REFERENCES 
[1] Jahromi, H.B., Farrahi, G.H., Maleki, M., Nayeb-Hashemi, H., Vaziri A. Residual stresses 

in autofrettaged vessel made of functionally graded material. Engineering Structures 
(2009) 31: 2930-2935. 

[2] Hassani, A., Hojjati, M.H., Farrahi, G.H., Alashti, R.A. Semi-exact solution for thermo-
mechanical analysis of functionally graded elastic-strain hardening rotating disks. 
Commun Nonlinear Sci Numer Simulat (2012) 17: 3747–3762.  

[3] Hassani, A., Hojjati, M.H., Mahdavi, E., Alashti, R.A., Farrahi, G.H. Thermo-mechanical 
analysis of rotating disks with non-uniform thickness and material properties. 
International Journal of Pressure Vessels and Piping (2012) 98: 95-101. 

[4] Widjaja, S., Limarga, M., Yip T.H. Modeling of residual stresses in a plasma-sprayed 
zirconi/ayalumina functionally graded-thermal barrier coating. Thin Solid Films (2003) 
434: 216–227. 

[5] Nie, G.J., Batra, R.C. tailoring and analysis of functionally graded isotropic and 
incompressible linear elastic hollow cylinders. Composite Structures (2010) 92: 265–274 

[6] Kurşun A. Elastoplastic stress analysis of functionally graded disc. PhD Thesis, 
Pamukkale University, Denizli, Turkey 2013. 

[7] ANSYS® 13.0 Procedures. Engineering Analysis System Verification Manual, Vol. 
1.Houston, PA, USA: Swanson Analysis System Inc (2012). 

831




