189,346 research outputs found

    A multiscale flux basis for mortar mixed discretizations of reduced Darcy-Forchheimer fracture models

    Get PDF
    In this paper, a multiscale flux basis algorithm is developed to efficiently solve a flow problem in fractured porous media. Here, we take into account a mixed-dimensional setting of the discrete fracture matrix model, where the fracture network is represented as lower-dimensional object. We assume the linear Darcy model in the rock matrix and the non-linear Forchheimer model in the fractures. In our formulation, we are able to reformulate the matrix-fracture problem to only the fracture network problem and, therefore, significantly reduce the computational cost. The resulting problem is then a non-linear interface problem that can be solved using a fixed-point or Newton-Krylov methods, which in each iteration require several solves of Robin problems in the surrounding rock matrices. To achieve this, the flux exchange (a linear Robin-to-Neumann co-dimensional mapping) between the porous medium and the fracture network is done offline by pre-computing a multiscale flux basis that consists of the flux response from each degree of freedom on the fracture network. This delivers a conserve for the basis that handles the solutions in the rock matrices for each degree of freedom in the fractures pressure space. Then, any Robin sub-domain problems are replaced by linear combinations of the multiscale flux basis during the interface iteration. The proposed approach is, thus, agnostic to the physical model in the fracture network. Numerical experiments demonstrate the computational gains of pre-computing the flux exchange between the porous medium and the fracture network against standard non-linear domain decomposition approaches

    Topology of Fracture Networks

    Get PDF
    We propose a mapping from fracture systems consisting of intersecting fracture sheets in three dimensions to an abstract network consisting of nodes and links. This makes it possible to analyze fracture systems with the methods developed within modern network theory. We test the mapping for two-dimensional geological fracture outcrops and find that the equivalent networks are small-world and dissasortative. By anlayzing the Discrete Fracture Network model, which is used to generate artifical fracture networks, we also find small world networks. However, the networks turn out to be assortative.Comment: 5 pages, 6 figure

    Tectonic interpretation of the connectivity of a multiscale fracture system in limestone

    Get PDF
    This paper studies the statistics and tectonism of a multiscale natural fracture system in limestone. The fracture network exhibits a self‐similar characteristic with a correlation between its power law length exponent a and fractal dimension D, i.e., a ≈ D + 1. Contradicting the scale‐invariant connectivity of idealized self‐similar systems, the percolation state of trace patterns mapped at different scales and localities of the study area varies significantly, from well to poorly connected. A tectonic interpretation based on a polyphase fracture network evolution history is proposed to explain this discrepancy. We present data to suggest that the driving force for fracture formation may be dissipated at the end of a tectonic event when the system becomes connected. However, the “effective” connectivity can successively be reduced by cementation of early fractures and reestablished by subsequent cracking, rendering a variable “apparent” connectivity that can be significantly above the percolation threshold.ISSN:0094-8276ISSN:1944-800

    Reservoir-scale transdimensional fracture network inversion

    Get PDF
    The Waiwera aquifer hosts a structurally complex geothermal groundwater system, where a localized thermal anomaly feeds the thermal reservoir. The temperature anomaly is formed by the mixing of waters from three different sources: fresh cold groundwater, cold seawater and warm geothermal water. The stratified reservoir rock has been tilted, folded, faulted, and fractured by tectonic movement, providing the pathways for the groundwater. Characterization of such systems is challenging, due to the resulting complex hydraulic and thermal conditions which cannot be represented by a continuous porous matrix. By using discrete fracture network models (DFNs) the discrete aquifer features can be modelled, and the main geological structures can be identified. A major limitation of this modelling approach is that the results are strongly dependent on the parametrization of the chosen initial solution. Classic inversion techniques require to define the number of fractures before any interpretation is done. In this research we apply the transdimensional DFN inversion methodology that overcome this limitation by keeping fracture numbers flexible and gives a good estimation on fracture locations. This stochastic inversion method uses the reversible-jump Markov chain Monte Carlo algorithm and was originally developed for tomographic experiments. In contrast to such applications, this study is limited to the use of steady-state borehole temperature profiles – with significantly less data. This is mitigated by using a strongly simplified DFN model of the reservoir, constructed according to available geological information. We present a synthetic example to prove the viability of the concept, then use the algorithm on field observations for the first time. The fit of the reconstructed temperature fields cannot compete yet with complex three-dimensional continuum models, but indicate areas of the aquifer where fracturing plays a big role. This could not be resolved before with continuum modelling. It is for the first time that the transdimensional DFN inversion was used on field data and on borehole temperature logs as input.DFG, 318763901, SFB 1294, Data Assimilation - The seamless integration of data and models, Assimilating data with different degrees of uncertainty into statistical models for earthquake occurrence (B04)TU Berlin, Open-Access-Mittel - 201

    A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics

    Get PDF
    A new approach to upscaling two-dimensional fracture network models is proposed for preserving geostatistical and geomechanical characteristics of a smaller-scale “source” fracture pattern. First, the scaling properties of an outcrop system are examined in terms of spatial organization, lengths, connectivity, and normal/shear displacements using fractal geometry and power law relations. The fracture pattern is observed to be nonfractal with the fractal dimension D ≈ 2, while its length distribution tends to follow a power law with the exponent 2 < a < 3. To introduce a realistic distribution of fracture aperture and shear displacement, a geomechanical model using the combined finite-discrete element method captures the response of a fractured rock sample with a domain size L = 2 m under in situ stresses. Next, a novel scheme accommodating discrete-time random walks in recursive self-referencing lattices is developed to nucleate and propagate fractures together with their stress- and scale-dependent attributes into larger domains of up to 54 m × 54 m. The advantages of this approach include preserving the nonplanarity of natural cracks, capturing the existence of long fractures, retaining the realism of variable apertures, and respecting the stress dependency of displacement-length correlations. Hydraulic behavior of multiscale growth realizations is modeled by single-phase flow simulation, where distinct permeability scaling trends are observed for different geomechanical scenarios. A transition zone is identified where flow structure shifts from extremely channeled to distributed as the network scale increases. The results of this paper have implications for upscaling network characteristics for reservoir simulation

    Critical point network for drainage between rough surfaces

    Get PDF
    In this paper, we present a network method for computing two-phase flows between two rough surfaces with significant contact areas. Low-capillary number drainage is investigated here since one-phase flows have been previously investigated in other contributions. An invasion percolation algorithm is presented for modeling slow displacement of a wetting fluid by a non wetting one between two rough surfaces. Short-correlated Gaussian process is used to model random rough surfaces.The algorithm is based on a network description of the fracture aperture field. The network is constructed from the identification of critical points (saddles and maxima) of the aperture field. The invasion potential is determined from examining drainage process in a flat mini-channel. A direct comparison between numerical prediction and experimental visualizations on an identical geometry has been performed for one realization of an artificial fracture with a moderate fractional contact area of about 0.3. A good agreement is found between predictions and observations
    corecore