13,202 research outputs found

    Narrow resonances with excitation of finite bandwidth field

    Get PDF
    The effect of the laser linewidth on the resonance fluorescence spectrum of a two-level atom is revisited. The novel spectral features, such as hole-burning and dispersive profiles at line centre of the fluorescence spectrum are predicted when the laser linewidth is much greater than its intensity. The unique features result from quantum interference between different dressed-state transition channels.Comment: 4 pages & 4 figures, Phys. Lett. A, (in press

    Energy transfer from retinal to amino acids — a time-resolved study of the ultraviolet emission of bacteriorhodopsin

    Get PDF
    Two-step excitation of retinal in bacteriorhodopsin by visible light is followed by an energy transfer to amino acids that is seen as fluorescent emission around 350 nm. The fluorescence spectrum obtained after two-step excitation (2 × 527 nm) differs from the fluorescence spectrum obtained after one-step ultraviolet excitation (263.5 nm) by a strongly quenched emission with a fluorescence lifetime of 10 ± 5 ps and a smaller spectral width. The two-step absorption process presumably selects tryptophan residues which strongly couple to the retinal chromophore

    Incoherent Mollow triplet

    Full text link
    A counterpart of the Mollow triplet (luminescence lineshape of a two-level system under coherent excitation) is obtained for the case of incoherent excitation in a cavity. Its analytical expression, in excellent agreement with numerical results, pinpoints analogies and differences between the conventional resonance fluorescence spectrum and its cavity QED analogue under incoherent excitation.Comment: 4 pages, 3 figure

    Narrow Spectral Feature In Resonance Fluorescence With A Single Monochromatic Laser Field

    Get PDF
    We describe the resonance fluorescence spectrum of an atomic three-level system where two of the states are coupled by a single monochromatic laser field. The influence of the third energy level, which interacts with the two laser-coupled states only via radiative decays, is studied in detail. For a suitable choice of parameters, this system gives rise to a very narrow structure at the laser frequency in the fluorescence spectrum which is not present in the spectrum of a two-level atom. We find those parameter ranges by a numerical analysis and use the results to derive analytical expressions for the additional narrow peak. We also derive an exact expression for the peak intensity under the assumption that a random telegraph model is applicable to the system. This model and a simple spring model are then used to describe the physical origins of the additional peak. Using these results, we explain the connection between our system, a three-level system in V-configuration where both transitions are laser driven, and a related experiment which was recently reported.Comment: 14 pages, 15 figures, extension of the spring mode

    Temperature dependent fluorescence in disordered Frenkel chains: interplay of equilibration and local band-edge level structure

    Get PDF
    We model the optical dynamics in linear Frenkel exciton systems governed by scattering on static disorder and lattice vibrations, and calculate the temperature dependent fluorescence spectrum and lifetime. The fluorescence Stokes shift shows a nonmonotonic behavior with temperature, which derives from the interplay of the local band-edge level structure and thermal equilibration. The model yields excellent fits to experiments performed on linear dye aggregates.Comment: 4 pages, 3 figure

    Interference in the resonance fluorescence of two incoherently coupled transitions

    Full text link
    The fluorescence light emitted by a 4-level system in J=1/2J=1/2 to J=1/2J=1/2 configuration driven by a monochromatic laser field and in an external magnetic field is studied. We show that the spectrum of resonance fluorescence emitted on the π\pi transitions shows a signature of spontaneously generated interference effects. The degree of interference in the fluorescence spectrum can be controlled by means of the external magnetic field, provided that the Land\'e g-factors of the excited and the ground state doublet are different. For a suitably chosen magnetic field strength, the relative weight of the Rayleigh line can be completely suppressed, even for low intensities of the coherent driving field. The incoherent fluorescence spectrum emitted on the π\pi transitions exhibits a very narrow peak whose width and weight depends on the magnetic field strength. We demonstrate that the spectrum of resonance fluorescence emitted on the σ\sigma transitions show an indirect signature of interference. A measurement of the relative peak heights in the spectrum from the σ\sigma transitions allows to determine the branching ratio of the spontaneous decay of each excited state into the σ\sigma channel
    • …
    corecore