359,000 research outputs found

    ISPH modeling of Rayleigh–Taylor instability

    Get PDF
    This paper presents a Smoothed Particle Hydrodynamics (SPH) solution to a Rayleigh-Taylor Instability (RTI) problem in an incompressible viscous two-phase immiscible fluid with an interfacial tension. The evolution of the fluid-fluid interface is numerically investigated for four different density ratios. The simulation outcomes are compared with existing results in literature. Three stages of instability, namely the exponential growth rate, the formation of circular form at the crest of spike and the appearance of the final shape of instability, are discussed for different density ratios. It is shown that the numerical algorithm used in this work is capable of capturing the complete physics behind the RTI, such as interface evolution, growth rate and secondary instability accurately, and successfully

    Small Structures via Thermal Instability of Partially Ionized Plasma. I. Condensation Mode

    Full text link
    (Shortened) Thermal instability of partially ionized plasma is investigated by linear perturbation analysis. According to the previous studies under the one fluid approach, the thermal instability is suppressed due to the magnetic pressure. However, the previous studies did not precisely consider the effect of the ion-neutral friction, since they did not treat the flow as two fluid which is composed of ions and neutrals. Then, we revisit the effect of the ion-neutral friction of the two fluid to the growth of the thermal instability. According to our study, (1) The instability which is characterized by the mean molecular weight of neutrals is suppressed via the ion-neutral friction only when the magnetic field and the friction are sufficiently strong. The suppression owing to the friction occurs even along the field line. If the magnetic field and the friction are not so strong, the instability is not stabilized. (2) The effect of the friction and the magnetic field is mainly reduction of the growth rate of the thermal instability of weakly ionized plasma. (3) The effect of friction does not affect the critical wavelength lambdaF for the thermal instability. This yields that lambdaF of the weakly ionized plasma is not enlarged even when the magnetic field exists. We insist that the thermal instability of the weakly ionized plasma in the magnetic field can grow up even at the small length scale where the instability under the assumption of the one fluid plasma can not grow owing to the stabilization by the magnetic field. (4) The wavelength of the maximum growth rate of the instability shifts shortward according to the decrement of the growth rate, because the friction is effective at rather larger scale. Therefore, smaller structures are expected to appear than those without the ion-neutral friction.Comment: To appear in Ap

    On the relation between viscoelastic and magnetohydrodynamic flows and their instabilities

    Get PDF
    We demonstrate a close analogy between a viscoelastic medium and an electrically conducting fluid containing a magnetic field. Specifically, the dynamics of the Oldroyd-B fluid in the limit of large Deborah number corresponds to that of a magnetohydrodynamic (MHD) fluid in the limit of large magnetic Reynolds number. As a definite example of this analogy, we compare the stability properties of differentially rotating viscoelastic and MHD flows. We show that there is an instability of the Oldroyd-B fluid that is physically distinct from both the inertial and elastic instabilities described previously in the literature, but is directly equivalent to the magnetorotational instability in MHD. It occurs even when the specific angular momentum increases outwards, provided that the angular velocity decreases outwards; it derives from the kinetic energy of the shear flow and does not depend on the curvature of the streamlines. However, we argue that the elastic instability of viscoelastic Couette flow has no direct equivalent in MHD.Comment: 21 pages, 3 figures, to be published in J. Fluid Mec

    A numerical study of Richtmyer–Meshkov instability in continuously stratified fluids

    Get PDF
    Theory and calculations are presented for the evolution of Richtmyer–Meshkov instability in two-dimensional continuously stratified fluid layers. The initial acceleration and subsequent instability of the fluid layer are induced by means of an impulsive pressure distribution. The subsequent dynamics of the fluid layer are then calculated numerically using the incompressible equations of motion. Initial conditions representing single-scale perturbations and multiple-scale random perturbations are considered. It is found that the growth rates for Richtmyer–Meshkov instability of stratified fluid layers are substantially lower than those predicted by Richtmyer for a sharp fluid interface with an equivalent jump in density. A frozen field approximation for the early-time dynamics of the instability is proposed, and shown to approximate the initial behavior of the layer over a time equivalent to the traversal of several layer thicknesses. It is observed that the nonlinear development of the instability results in the formation of plumes of penetrating fluid. Late in the process, the initial momentum deposited by the impulse is primarily used in the internal mixing of the layer rather than in the overall growth of the stratified layer. At intermediate times, some evidence for the existence of scaling behavior in the width of the mixing layer of the instability is observed for the multiple-scale random perturbations, but not for the single-scale perturbations. The time variation of the layer thickness differs from the scaling derived using ideas of self-similarity due to Barenblatt [Non-Linear Dynamics and Turbulence, edited by G. I. Barenblatt, G. Ioos, and D. D. Joseph (Pitman, Boston, 1983), p. 48] even at low Atwood ratio, presumably because of the inhomogeneity and anisotropy due to the excitation of vortical plumes

    Towards first-principles understanding of the metal-insulator transition in fluid alkali metals

    Full text link
    By treating the electron-ion interaction as perturbation in the first-principles Hamiltonian, we have calculated the density response functions of a fluid alkali metal to find an interesting charge instability due to anomalous electronic density fluctuations occurring at some finite wave vector {\bi Q} in a dilute fluid phase above the liquid-gas critical point. Since |{\bi Q}| is smaller than the diameter of the Fermi surface, this instability necessarily impedes the electric conduction, implying its close relevance to the metal-insulator transition in fluid alkali metals.Comment: 11 pages, 5 figure
    corecore