267,550 research outputs found
Intuitionistic fixed point theories over Heyting arithmetic
In this paper we show that an intuitionistic theory for fixed points is
conservative over the Heyting arithmetic with respect to a certain class of
formulas. This extends partly the result of mine. The proof is inspired by the
quick cut-elimination due to G. Mints
Issues with rounding in the GCC implementation of the ISO 18037:2008 standard fixed-point arithmetic
We describe various issues caused by the lack of round-to-nearest mode in the
\textit{gcc} compiler implementation of the fixed-point arithmetic data types
and operations. We demonstrate that round-to-nearest is not performed in the
conversion of constants, conversion from one numerical type to a less precise
type and results of multiplications. Furthermore, we show that mixed-precision
operations in fixed-point arithmetic lose precision on arguments, even before
carrying out arithmetic operations. The ISO 18037:2008 standard was created to
standardize C language extensions, including fixed-point arithmetic, for
embedded systems. Embedded systems are usually based on ARM processors, of
which approximately 100 billion have been manufactured by now. Therefore, the
observations about numerical issues that we discuss in this paper can be rather
dangerous and are important to address, given the wide ranging type of
applications that these embedded systems are running.Comment: To appear in the proceedings of the 27th IEEE Symposium on Computer
Arithmeti
Stochastic rounding and reduced-precision fixed-point arithmetic for solving neural ordinary differential equations
Although double-precision floating-point arithmetic currently dominates
high-performance computing, there is increasing interest in smaller and simpler
arithmetic types. The main reasons are potential improvements in energy
efficiency and memory footprint and bandwidth. However, simply switching to
lower-precision types typically results in increased numerical errors. We
investigate approaches to improving the accuracy of reduced-precision
fixed-point arithmetic types, using examples in an important domain for
numerical computation in neuroscience: the solution of Ordinary Differential
Equations (ODEs). The Izhikevich neuron model is used to demonstrate that
rounding has an important role in producing accurate spike timings from
explicit ODE solution algorithms. In particular, fixed-point arithmetic with
stochastic rounding consistently results in smaller errors compared to single
precision floating-point and fixed-point arithmetic with round-to-nearest
across a range of neuron behaviours and ODE solvers. A computationally much
cheaper alternative is also investigated, inspired by the concept of dither
that is a widely understood mechanism for providing resolution below the least
significant bit (LSB) in digital signal processing. These results will have
implications for the solution of ODEs in other subject areas, and should also
be directly relevant to the huge range of practical problems that are
represented by Partial Differential Equations (PDEs).Comment: Submitted to Philosophical Transactions of the Royal Society
Optimal Controller and Filter Realisations using Finite-precision, Floating- point Arithmetic.
The problem of reducing the fragility of digital controllers and filters
implemented using finite-precision, floating-point arithmetic is considered.
Floating-point arithmetic parameter uncertainty is multiplicative, unlike
parameter uncertainty resulting from fixed-point arithmetic. Based on first-
order eigenvalue sensitivity analysis, an upper bound on the eigenvalue
perturbations is derived. Consequently, open-loop and closed-loop eigenvalue
sensitivity measures are proposed. These measures are dependent upon the filter/
controller realization. Problems of obtaining the optimal realization with
respect to both the open-loop and the closed-loop eigenvalue sensitivity
measures are posed. The problem for the open-loop case is completely solved.
Solutions for the closed-loop case are obtained using non-linear programming.
The problems are illustrated with a numerical example
- …
