267,550 research outputs found

    Intuitionistic fixed point theories over Heyting arithmetic

    Full text link
    In this paper we show that an intuitionistic theory for fixed points is conservative over the Heyting arithmetic with respect to a certain class of formulas. This extends partly the result of mine. The proof is inspired by the quick cut-elimination due to G. Mints

    Issues with rounding in the GCC implementation of the ISO 18037:2008 standard fixed-point arithmetic

    Full text link
    We describe various issues caused by the lack of round-to-nearest mode in the \textit{gcc} compiler implementation of the fixed-point arithmetic data types and operations. We demonstrate that round-to-nearest is not performed in the conversion of constants, conversion from one numerical type to a less precise type and results of multiplications. Furthermore, we show that mixed-precision operations in fixed-point arithmetic lose precision on arguments, even before carrying out arithmetic operations. The ISO 18037:2008 standard was created to standardize C language extensions, including fixed-point arithmetic, for embedded systems. Embedded systems are usually based on ARM processors, of which approximately 100 billion have been manufactured by now. Therefore, the observations about numerical issues that we discuss in this paper can be rather dangerous and are important to address, given the wide ranging type of applications that these embedded systems are running.Comment: To appear in the proceedings of the 27th IEEE Symposium on Computer Arithmeti

    Stochastic rounding and reduced-precision fixed-point arithmetic for solving neural ordinary differential equations

    Get PDF
    Although double-precision floating-point arithmetic currently dominates high-performance computing, there is increasing interest in smaller and simpler arithmetic types. The main reasons are potential improvements in energy efficiency and memory footprint and bandwidth. However, simply switching to lower-precision types typically results in increased numerical errors. We investigate approaches to improving the accuracy of reduced-precision fixed-point arithmetic types, using examples in an important domain for numerical computation in neuroscience: the solution of Ordinary Differential Equations (ODEs). The Izhikevich neuron model is used to demonstrate that rounding has an important role in producing accurate spike timings from explicit ODE solution algorithms. In particular, fixed-point arithmetic with stochastic rounding consistently results in smaller errors compared to single precision floating-point and fixed-point arithmetic with round-to-nearest across a range of neuron behaviours and ODE solvers. A computationally much cheaper alternative is also investigated, inspired by the concept of dither that is a widely understood mechanism for providing resolution below the least significant bit (LSB) in digital signal processing. These results will have implications for the solution of ODEs in other subject areas, and should also be directly relevant to the huge range of practical problems that are represented by Partial Differential Equations (PDEs).Comment: Submitted to Philosophical Transactions of the Royal Society

    Optimal Controller and Filter Realisations using Finite-precision, Floating- point Arithmetic.

    Get PDF
    The problem of reducing the fragility of digital controllers and filters implemented using finite-precision, floating-point arithmetic is considered. Floating-point arithmetic parameter uncertainty is multiplicative, unlike parameter uncertainty resulting from fixed-point arithmetic. Based on first- order eigenvalue sensitivity analysis, an upper bound on the eigenvalue perturbations is derived. Consequently, open-loop and closed-loop eigenvalue sensitivity measures are proposed. These measures are dependent upon the filter/ controller realization. Problems of obtaining the optimal realization with respect to both the open-loop and the closed-loop eigenvalue sensitivity measures are posed. The problem for the open-loop case is completely solved. Solutions for the closed-loop case are obtained using non-linear programming. The problems are illustrated with a numerical example
    corecore