968,358 research outputs found

    Finite element methods for surface PDEs

    Get PDF
    In this article we consider finite element methods for approximating the solution of partial differential equations on surfaces. We focus on surface finite elements on triangulated surfaces, implicit surface methods using level set descriptions of the surface, unfitted finite element methods and diffuse interface methods. In order to formulate the methods we present the necessary geometric analysis and, in the context of evolving surfaces, the necessary transport formulae. A wide variety of equations and applications are covered. Some ideas of the numerical analysis are presented along with illustrative numerical examples

    Singular finite element methods

    Get PDF
    Singularities which arise in the solution to elliptic systems are often of great technological importance. This is certainly the case in models of fracture of structures. A survey of the ways singularities are modeled is presented with special emphasis on the effects due to nonlinearities

    Programming of Finite Element Methods in MATLAB

    Full text link
    We discuss how to implement the linear finite element method for solving the Poisson equation. We begin with the data structure to represent the triangulation and boundary conditions, introduce the sparse matrix, and then discuss the assembling process. We pay special attention to an efficient programming style using sparse matrices in MATLAB

    Compatible finite element methods for numerical weather prediction

    Full text link
    This article takes the form of a tutorial on the use of a particular class of mixed finite element methods, which can be thought of as the finite element extension of the C-grid staggered finite difference method. The class is often referred to as compatible finite elements, mimetic finite elements, discrete differential forms or finite element exterior calculus. We provide an elementary introduction in the case of the one-dimensional wave equation, before summarising recent results in applications to the rotating shallow water equations on the sphere, before taking an outlook towards applications in three-dimensional compressible dynamical cores.Comment: To appear in ECMWF Seminar proceedings 201

    Trace Finite Element Methods for PDEs on Surfaces

    Full text link
    In this paper we consider a class of unfitted finite element methods for discretization of partial differential equations on surfaces. In this class of methods known as the Trace Finite Element Method (TraceFEM), restrictions or traces of background surface-independent finite element functions are used to approximate the solution of a PDE on a surface. We treat equations on steady and time-dependent (evolving) surfaces. Higher order TraceFEM is explained in detail. We review the error analysis and algebraic properties of the method. The paper navigates through the known variants of the TraceFEM and the literature on the subject
    corecore