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SINGULAR FINITE ELEMENT METHODS

George J. Fix

ABSTRACT
Singularities which arise in the solution to elliptic system are often of
great technological importance. This is certainly the case in models of
fracture of structures. In this report, we survey the way singularities are

modeled with special emphasis on the effects due to nonlinearities.

This work was supported in part by NSF under contract DMS-8601287. Also, under
the National :Aeronautics and Space Administration under NASA Contract No.
NAS1-18107 while the author was in residence at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center,
Hampton, VA 23665-5225.



1. INTRODUCTION

The key property of elliptic systems is that their solution tends to be
as smooth as the data and other factors permit. This is in striking contrast
to hyperbolic systems where singular behavior (e.g., shocks) can arise even if
all inputs are smooth.

To illustrate this, consider the following model problem defined in a

bounded region  of R':

(1.1) div[a grad¢] = £ in Q
(1.2) B[¢] = ¢ on 9Q.
The boundary operator B has the form

(1.3) Bl¢] = a 22 + 8o,

where v is the outer normal to 3Q.. Thus the 1inputs to this system are
the coefficients a, a, B, the data f, g, and the region (918 If all of
these are smooth, then the same is true of the solution ¢.

This means that singular behavior can arise only in the cases where the

inputs are irregular. The following are examples of technical importance.

Case 1: Irregular Boundaries. The study of fracture and crack

propagation involves elliptic systems of various orders depending on the type
of problem being modelled [1] - [2]. Torsion problems are second order (like

(1.1)), while plates involve fourth order equations, and shell problems are



even of higher order [3] -~ [4]. Nevertheless, the region 9] in question
generally contains a slit as in Figure 1.l with the point P being the crack
tip. In the linear, second order case (a = ! in (l.1)) it can be shown that
with Dirichlet boundary condition (a =0, 8 =1 in (1.2)) the solution ¢

behaves 1like

(1.4) b = orl/2 sin(6/2) + o(r)

near the crack tip (r+0). Thus the gradient is singular at the crack tip:

(1.5) 96| = o(z"1/2

) as 0.

The coefficient o} of the singularity is of great technical importance, and
is called the stress intensity factor. Knowing it permits estimates on crack
behavior via energy release rates [5] - [6].

While singular behavior at cormers in solid mechanics 1is of great
technical significance, in fluid mechanics corner singularities are often
irrelevant artifacts. For example, linear potential flow over a flat plate
involves the same equations and geometry as discussed above [7]. In this
case, the gradient V¢ is the velocity field and hence (1.5) predicts a
square root singdlarity at P. This does not occur in real flows and is an
artifact of the linearization. A proper nonlinear analysis shows the velocity

singularity is a good deal milder. This and other nonlinear effects are

discussed in Section 3.




Figure l.l1. The Slit Region Q: (r,9) are polar coordinates at P

Case 2: Discontinuous Boundary Operators. Singularities can arise when

the boundary conditions (1.2) abruptly change type, or what is the same, when
the coefficients a, B in (1.3) are discontinuous. An example is given in

Figure 1.2. Observe that in this case the Neuman condition

is a symmetry condition, and hence this case is exactly the one represented in
Figure l.l1. 1In particular, the singularity is described by (l.4). Most of
the applications in fluid and solid mechanics involving discontinuous boundary

operators arise in this manner.

¢ =0 p

Figure 1.2. Discontinuous Boundary Conditions



Case 3: Discontinuous Coefficients. Discontinuities in the coef-~

ficient a in (l.l1) can also generate singularities in the solution ¢.

Cases of technical importance include diffusion problems in regions Q con-
sisting of different materials [8] - [9]. A typical example is shown in
Figure 1.3. Using polar coordinates (r,6) at the point P, it can be shown

that the singularity behaves like

(1.6) 6 = or® 6(8)

plus higher order terms in r for a suitable function %. The exponent
depends on the (constant) values a; of a 1in each of the regions

Qj (j = 1,000,4), In general, these singularities can be far more serious
than the square root singularity in (l1.4). 1In particular, A > O can be

made arbitrarily small for appropriate choices of Blyeeesdy [9].

Figure 1.3. The region Q@  for the apriori bound (2.22)

Case 4: Nonsmooth Data. Cases where for g in (l1.1) - (1.2) are not

smooth arise in solid mechanics when bodies are subject to random loads
[10]. To date, these have been best treated using the techniques of stochas-

tic differential equations since singular behavior of the solution ¢ tends




to be distributed over the entire region e These techniques are not
treated in this paper, and the reader 1is referred to [11] for more details.

The presence of singularities, such as described above, tend to
significantly affect the rates of convergence for both finite difference as
well as finite element schemes [12]. Except for Case 4 cited above, two
approaches have been used to treat the singular behavior. One, generally
called the singular element method because of the way it is used in finite
element schemes, attempts to incorporate the singular behavior into the
approximation. The other approach uses grid refinement.

To put this paper into proper perspective, it should be clearly noted
that, in general, grid refinement is the best approach. This is particularly
the case when adaptive strategies can be incorporated into the approximation
{131 - [15}. Singular elements tend to be useful only in very special
circumstances, some of which are cited below. However, the methodology used
to derive singular elements still remains quite relevant. The point is a
priori knowledge of the nature of the singularity can be of practical benefit
even if this information is used only indirectly. This is certainly true of
grid refinement as well as h, p, and h-p versions of the finite element
method [15] = [16]. Because of this, these methodologies will receive the
primary emphasis in this paper.

Sections 2 and 3 are devoted to the types of singular behavior that can
arise in elliptic systems. Section 3 considers nonlinear effects, and this
material 1is apparently new. The final section concentrates on practical
issues associated with singular elements along with selected numerical

results.




2. SINGULAR BEHAVIOR IN LINEAR SYSTEMS

For simplicity attention will be confined to problems with corner
singularities. Interface problems (Case 3 in Section 1) are treated with
similar techniques.

In the linear case the starting point is the construction of explicit
solutions using separation of variables for constant coefficient probiems and
simple geometries. Then using well developed techniques from the theory of
partial differential equation (e.g., modifiers and frozen coefficients
iterations) one can analyze problems with variable coefficients and rather
broad classes of regions Q ([17] - [18]).

Apparently, the first researcher to realize that the form of
singularities can be obtained by a local separation of variables was L.
Williams [19]. To describe the results in this classic paper, consider the
sectorial region shown in Figure 2.1 letting (r,0) denote polar coordinates,

then (1.1) (with a = 1) becomes

2 2
ar r 98
Assuming a solution of the form
(2.2) ¢ = re(8),

we are led to an eigenvalue problem for the exponent A and the function

d:
2
(2.3) —d—% + Azqs =0,




The type of singularity obtained thus depends on the boundary conditions.

Dirichlet conditions

(2.4) $(0) = <l>(60) =0
yield
(2.5) * Osinod, sinc8_, = O.

0

The relevant solution is the one with the smallest positive index o. This

gives
%_
(2.6) $ = r Osin(ﬂg)
6
0
as the dominant singular term. Observe that V¢ is finite at the corner

point P, if and only if 0« 90 <nm; 1.e., reentrant corners (eO > w)
yield unbounded gradients. 1In the case of a crack shown in Figure 1.1, we
have 90 = 2n, and hence (2.6) reduces to the square root singularity given
by (1.4).

It is important to note that the order of the differential operator

exerts an important influence on the type of singularities that are

obtained. For example, consider the fourth order equation

(2.7) i A =0

defined in the section shown in Figure 2.1. Assuming a solution of the form



(2.8) o = o o),

we obtain

(2.9) d(8) = alsin(x + 1) + azcos(x + 1)8 + blsin(k - 1)6 + bzcos(k - 1)8.

The constants ajs bj depend on the boundary conditions to be imposed on

8 =0 and 6 = 60. For example, along a clamped radial edge one has

_ 1 0w _
(2.10) w =0, =55 = 0,
while a simply supported edge gives
(2.11) w =0, Og = 0,
where
2 2
(2.12) oe=—17§—-%+l§%+v-a—‘g,
R or
v being the Poisson ratio. Substituting into either of the boundary
conditions gives a nonlinear equation for the exponent Ao Except for

special cases this equation must be solved numerically, i.e., explicit
formulas fd; the exponents are not known. Nevertheless, a number of
\

qualitative features of solutions to these equations are known (along with

specific numerical values in technically important cases [19]).




An important point is that solutions A can be complex. This implies
that oscillatory behavior in the radial directions can occur, This is
particularly relevant for cases where the stress intensity factors are
approximated using only nodal values of the solution ¢.

In the case of a crack (Figure 1.2) it can be shown that ) = %—. Thus
the stress g given by (2.12), which is the analog of the gradient for the

fourth order case, displays a square root singularity.

/1))

=0

Figure 2.1. The sector

Another issue of technical importance concerns the effect of dimension.
The direct generalization of William”s work to three dimensions involves the
conical region shown in Figure 2.2. Letting (r,0,y) denote spherical

coordinates, ‘one seeks a solution of the form

(2.13) o = r'e(8,0).
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In the second order case, one is again lead to an eigenvalue problem except

now for the Laplace-Beltrami operator on the boundary surface of Q:

2
12 (L. B—(Smeggl)+x(x+1)¢=o.

(2.14) -
sinZe awz sind 96

A. further separation of variables gives
(2.15) P(0,p) = sin(mp + a)P(8),

where P satisfies the Legendre equation

(2.16) %u- [ - ) %} + 1) -

with u = cosbB. In the case of Dirichlet boundary conditions, solutions are
obtained by requiring

(2.17) P(uo) = 0, = cosh

Yo 0°

Properties of these solutions have been studied for the case 0 < 6, <7

[20]. The dominant singularity is independent of ¢ (i.e., m =0, a = in

vl o

(2.15)). In this case (2.16) can be solved with Legendre functions P = Pk
and (2.17) reduces to a nonlinear equation for . Many of the character-
istics of the two dimensional case reappear here. For example, |V¢l is

finite at P omnly in the case of convex region (0 < 60 < %J.
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Interestingly, this analysis runs into trouble in the case of a crack

*
eo = n.( ) Here, (2.17) does not have solutions with m = 0 since the only
solutions to (2.16) with m = 0 which are finite on -1 <<l are
Legendre polynomials Pn(k = n) which satisfy ]Pn(il)l =1, The net

result 1is the question of the completeness of the functions in which the

singular behavior 1is described. Nevertheless, if one were to accept the

limiting behavior as 8+7 as valid, then the apparently ubiquitous square

root singularity reemerges.

€

8 .
‘\\E& P
- /
- /

!

~
Pa /
~
v N1

Figure 2.2. Spherical coordinates and the conical region Q.

*The case 0p = T is exactly the one where the region ® fails to satisfy an
exterior cone condition [17] - [18]. Most of the results from the theory of
partial differential equations as well as embedding theorems for Sobolev
spaces are not valid in the absense of this condition. In two dimensions,
this appears to be only a technical point limiting the analytical techniques
used, while in three dimensions it seems to be a fundamental issue.
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The open question of completeness of the functions used to describe
singular behavior in three dimensions is also present in regions other than
cones. Thus a rigorous account of how solutions behave near planar slices
in Q, a case of considerable technical importance is still not completely
known.

Elementary solutious such as those described above can be used to obtain
results for rather general regions 9] and for problems with variable
coefficients. Typically this approach will not yield explicit behavior, but
rather shows that the, solutions lie in appropriate Sobolev spaces. With most
grid refinement techniques, this information is almost as useful as knowing
the explicit behavior.

To fix ideas, consider the second order case (l.1) - (1.2), where a is
a smooth function of the spatial variables and a =0, B8 =1 (Dirichlet
boundary conditions). Let Q be the region shown in Figur 2.3 which has a
corner at P but is otherwise smooth. Note that the edges leading to P do
not necessarily have to be straight. For this region we introduce the
following weighted Sobolev spaces in terms of the radial distance r to P.

Indeed, let
(2.18) ™ = {f rslmlz}l/z
0,8 Q

be a weighted L2 for the given exponent 8 € R The higher order spaces

involve derivatives. Thus

(2.19) "wnl = {f rB[valz + m2]}1/2
’B Q




with analogous

solution ¢
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definitions for Hw"t 8 (t > 1. A priori bounds on the
b

were first obtained in a fundamental paper by Kondrat“ev [17]

(see also [18]). A typical result in the case of homogeneous boundary

conditions (g =

0 in (1.2)) shows that if

(2.20) t+1-—(n/eo)<8_§t+1
and
2. £ (o,
(2.21) £,8
then there is a constant 0 < C <», depending only on t,R,2, and a,
for which
. f .
(2.22) 16 1o g <l Vo8
The analysis requires that Q satisfy an exterior cone condition and hence
the interior angle 60 is restricted to 0 < 60 < 2n. This inequality

can be verified directly in the cases where the explicit singular behavior is

known.

Q

Figure 2.3
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The practical use of a priori bounds like (2.22), and well as use of the

explicit singular behavior (when known) will be discussed in the last section.

3. SINGULAR BEHAVIOR IN NONLINEAR SYSTEMS

In this section, we shall study the effects of nonlinearities on singular
behavior. In this setting, the basic paradigm underlying the analysis in the
linear case, namely separation of variables, is not available, hence different
techniques are needed.

To fix ideas, we consider (1.1) with Dirichlet boundary conditions
(o = 0, B =1) in the sector shown in Figure 2.]l. We assume the coefficient

depends on the gradient V¢ as

(3.1) a = a(|v]%).
For the problem to be elliptic, we need

(3.2) & la(n)’e] > 0
uniformly throughout Q.

An early approach to this problem was given by Tolksdorf [21}. He looked

for solutions of the form
A

and showed that A, & are related through a nonlinear eigenvalue problem.
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A key parameter in the latter is the number

(3.4) q = lim [t dzgt)/a(t)].
o

As will be seen below, this number determines the nonlinear effects on the
singularity. Observe that q = 0 in the linear case, and for this system to

be elliptic it is necessary that
2

Because of the nonlinearities, it 1is not possible to get explicit
solutions to the nonlinear eigenvalue problem. However, using maximum
principle arguments with comparison functions, Tolksdorf was able to obtain

the following bounds on the minimal exponent A in (3.3):

(3.6) A (B) <A <08,

where

qug + ¥ (2q + 1)(4q + 1) + qzu%
(3.7) >‘l(e) - ao(kq + 1)
and
9@, + /'(Zq + 1) + qzag
(3.8) >‘2(6) = aO(Zq + 1)
with 6, =«
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Unfortunately, as will be shown below, the inequalities in (3.6) are not
strict except in the linear case q = 0. Nevertheless, the results do contain
useful information. For example, 0 < A <1 for reentrant corners
(r < 60 < 21), and hence |V¢| is singular in these cases. Moreover, this
is the only property that_survives from the linear case, and the nonlinear
terms definitely affect the asymptotic behavior as r+0. It 1is also
noteworthy that this approach can also be used in three and higher dimensions.

Shafp results can be obtained for the case of two dimensions. The
starting point is a fundamental paper by L. Lehman [22]. This work was
limited to the linear case, however, the function theoretic approach used did
not require the explicit construction of .solutions via separation of
variables. The exact form of the singularity was obtained, but in an indirect
manner using appropriate transformations and analytic continuation. This is
why the resq}ts are limited to planar regions; however, they do point the way
to an approach for the nonlinear case via a hodograph transformation.

In particular, we let u,v denote the components of the gradient V¢

and rewrite (l.1) as

vV 2, du v du v av V. 2y v _
(3.9) (a + a'u’) §§-+ (2a"uv) 5§-+ (2a’uv) §§-+ (a + a'v9) 3y 0
Jdu v _
(3-10) W-ﬁ- 0,
where aV - da . The hodograph transformation takes the form

t

(3.11) x = x(u,v), y = y(u,v).




(3.12) J=32°dv_

is nonzero, we have

V.2, 3y _

Voo ..V |3y V.2, 9% _
(3.13) (a + 2a u”) e (2a uv (2a uv) 5G'+ (a + 2a' v™) T3 0

@

x_3y=
v - 3u - C°

(3.14)

Because the last relation, a potential ¢ can be introduced so that
9 2
(3.15) o .oy, 3% - y.

This gives

2 2 2
(3.16) (@ + 200y &Y _ uaVuv B8 4 (a4 2a°v%) LY < o,
' av2 dudv 5u

[aS]

Thus the hodograph takes the original nonlinear problem into a linear one.
Observe that ellipticity of the equation 1is not affected by the
transformation.

Hodograph transformations have been used in a number of problems [7].
The technical difficulty has typically been in deriving boundary conditions in
the hodograph plane. In fact, the traditional approach in fluid dynamics is
to let the boundary conditions so obtained actually define the problem that is

being solved [7, Ch. XX]. Here no such problems arise, as can be anticipated
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from a careful study of Lehman”s work. The cases of a reentrant (60 >m) or
convex (6O < m) corner are different, so for brevity we consider only the
former since it is the most important.

The boundary transformations under the hodograph are given in Figure

3.1. 1In particular, the sector Q: O 5'6 5_60 gets mapped into a double
cone § with angle 60 - 7.
y «Q v
L °0™"
=) 2
0
(tane g)k

u + vtan g = 0

Figure 3.1. The hodograph

Introducing polar coordinates

(3.17) u = pcosw, v = psinw.

It can be shown that (3.16) reduces to

2 2
(3.18) (—2 y2% 13 1 8% g,
a + 2avp2 p2 b 3 ;2-;;7

Moreover, Dirichlet boundary conditions v =0 on 85 can be used.
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Tolksdorf”s work shows that Vo is singular at the corner point r =
0. Thus in the hodograph plane it is the behavior at p = o which is
relevant. Since the coefficient in (3.18) is smooth, Kondret“ev's work [17]
shows one can freeze it in the neighbor of the singularity; i.e., replace it
with

. a _ 1
(3.19) lim ( VQ) = 1 + ?.q ’

t¥o a + 2ap

where q is the index (3.4) appearing in Tolksdorf”s work. The resulting

problem
2 2
A<y s Wy
(3.20) S R L
S q aol. £ op ae(.

can now be solved by separation of variables. In particular, letting

(3-21) P = po Sin(ﬁj_—“)

we obtain

_ 2 29 + 1
(3.22) o =%04, og=4q+ /'q + ——,
(ag - 1)
where 60 = aoﬂ. Since it is the behavior at © which is relevant, we
take g = *oo. Expressing the results in terms of the radial coordinate

r in the physical plane, we have

(3.23) |99 | ~ .
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Hence

on/(on + 1) =1
(3.24) V¢~r 0 0 3

or what is the same the exact exponent A in (3.3) is given by

o
(3.25) A= l_q_oT . 00 = q2 + /qz + 2q + 1 , .
0 (g = 1

Observe that in terms of the lower bound Al and upper bound A

above we have

(3.26) Al <X Az

except in the linear case (q = 0) where

1 2 0
Consider now the case of a slit where @y = 2. The exponent A
to
3.26 =29 +1
(3.26) o

Observe that if q 1is negative, then

1
(3.27) A< 7

cited

reduces
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i.e., the singularity is stronger than that occurring in the associated linear
problem, The limiting case is q=- %-, and the problem is no longer
elliptic for smaller values of q. That this type of analysis fails is to be
anticipated. Indeed, the equations will be hyperbolic in such cases, and the
presence of real charcteristics means that the type of singularity obtained
depends on information in the far field away from the singular point.

If, on the other hand, q > 0 we have a situation where the nonlinear

terms smooth the singularity; i.e.,
1
(3.28) A> = .
A case of interest is compressible potential fiow {7] where
§-1 _ 27,2 _ 6 -1
(3.29) a(t) = Mm[c0 (—T—)t].

It is readily seen that

(3.30) 4= =7
in this case, and so
(3.31) A =l_;.5£ .

For dry air § = 1.405 and A is approximately .9. As far as numerical
approximations are concerned, this is a far less serious singularity than

A= .5 predicted for linear flows.



-22-

4. PRACTICAL CONSIDERATIONS

To fix ideas, consider the planar region shown in Figure 2.3, and the
linear second order case,

As far as (nonadaptive) mesh refinement is concerned, the starting point
is the identification of a region Qs about the singular point where mesh
refinement is used. An important practical consideration is that with local
mesh refinement the number of points used in Qs need only grow like
O(Ilnhlz), where h is the far field mesh spacing. The key to this is the
existence of an a priori bound like (2.22). For simplicity, we take the

case t =0 so
(4.1) 1 - n/eo <Bg < 1.

The grid goes as follows. For triangles adjacent to P the diameter $,

satisfies

1

(4.2) 6 < (constant)h -8

This is increased by a constant factor until the far field uniform grid with
spacing h 1is obtained. Grids of this type have been used in [23] for
standard finite element methods and in [4] for those based on least square

approximations.

It can be shown that for such grids the approximation ¢n using linear

elements satisfies

(4.3) U6 - e D132 < on {278 0% |}/2
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Numerical evidence shows that if approximate difference quotients are used,
then approximations oy to the stress intensity factor o can be

obtained satisfying
(4.4) o -oa = O(h3/2)

in the case of a slit region (Figure 1.1) [25]. It is a point of practical
significance that the form of the singularity must be known in order to
establish the relevant difference approximation for o - Path independent
J-integrals ([26] can be used as an alternative, however, they produce
‘approximations which converge at lower rates, typically O0(h) when using
linear elements.

In a singular element approach, one seeks approximations in the form

(4.5) o = 0y * Z JUN
]
where ¢s is the (known) singular function, oy is the intensity of the

singularity (to be computed), and N; are the plecewise linear nodal
functions. Since variational methods typically yield best approximations (in

suitable norms), the term °h¢s in effect substracts out the singularity;

i.e., for a suitable number o (the exact intensity)
(4.6) 14 - o¢slz,0 < =,

and thus .¢ - oé can be approximated by piecewise linear functions on a

regular grid. Stated differently
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(4.7) gin: 1 = o =) EiNiul,O < Chig -no_t,
i’

,0°

This means the ¢h computed by a finite element approximation will satisfy
(4.8) L N < Ch.

In addition, the intensity o in (4.5) has been observed to converge at
the rate found in (4.4) [25].
Substitution of (4.5) into a variational principle typically leads to a

matrix problem of the form

~
~
e
()

(4.9)

sl ss h s

where K;; 1is a regular finite element matrix, K;g contains inner products
of Nj with ¢S, while the number Kgs is the inner product of ¢ with

itself. Note that K ; is 1 x N where N 1is the number of N; whose
support intersects the support of ¢S. For the above error estimates to be
uniformly valid as 0, it is necessary that the support of ¢S be fixed
independent of h. Thus N grows like 0(h™2) as  m0.

One of the early fears about the use of singular functions was that one
might be giving up stability in order to gain greater accuracy. While it is

true than the coefficient matrix in (4.9) has a far larger condition number

that the standard stiffness matrix Kyys this has not created ,problems in

practice [25]. For example, in direct elimination the problems are isolated




in a one dimensional subspace. Indeed, the matrix in (4.9) admits the
factorization

1 Kis In V11 is
(4.10) =

K K L L v

sl ss sl Ss ss

where
(4.11) Kll = L11V11
( 12 v =1 7 v =1
(4.12) Y1s T MiY1sr Kar T ta'na
(4.13) =

- - L V .
ss levls SS sS

Thus the bulk of the computation is in the factorization of the standard
stiffness matrix K;; 1in (4.11). The bordered parts Lg;, V4] are obtained
through the (stable) backsolves (4.12), and the only part of the calculation
where the instability occurs in the 1 x 1 problem (4.13) (here Lgg = 1
and V.., Ko - LgyV;g are numbers).

Also, note that if the stress intensity factor Y is the only
quantity §f interest, and this is frequently the case, then half of the
backsolves can be omitted. Indeed, to get o from (4.9) one backsolves

h

(4.14) L.y=f, L w=f -L .y
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for y and w. Then

(4.15) V o0 =uw.

The remaining backsolves, i.e.,

(4.16) V112_=.X - Vlso,
can be omitted.
The rates of convergence for ¢h and SN are the same as that

observed for the case of grid refinement [12]. Thus asymptotically as h»0
there is not a great deal of difference between the two approaches. Although,
as noted earlier, the superiority of grid refinement emerges as adaptivity is
incorporated into the approximation.

In practical terms, the singular function approach has the advantage of
fewer backsolves (in the case where only the intensity is desired), but
suffers the disadvantage of requiring that not only inner products of nodal
functions Nj be evaluated, but also inner products of the more complicated
singular functioms ¢S. Both of these effects contribute to the lower order
terms in the overall work effect--considered as a function of %--- and thus
both effects are negligible in the limit as h+0.

On tﬁe other hand, for modest accuracy requirements (h not small) the
savings in §acksolves tends to be a significant effect. It is exactly in
these cases ;here singular element methods have proven to be useful. To cite
a specific numerical example, consider the problem described in Figure 4.1.

This problem has been used as a test problem for a large number of different
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numerical methods ([25] - [30]), and it is known that the stress intensity

factor is

o = .1917

(to the number of decimals shown). Using a single singular function on a

uniform grid with h = é- (65 unknowns) gives

o, = .1862

while a B-~grid refinement with 16 unknowns (and over three times the CPU

cycles and storage requirements) gave
o, = .1621

with finer grids; however, the differences in overall work for a given
accuracy rapidly disappears [27].

. Another special case where singular elements have proven useful is what
could be called an '"h-p version" of the singular element method. Here one
uses more singular functions than would be actually needed, not only to
substract out the singularity but also to approximate. For example, in the

problem cited above, the use of 8 singular functions and a uniform grid with

= 1
h = I gives
[o} = 01916

(see [27] for this and other examples).
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