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SINGULAR FINITE ELEMENT llETAODS 

George J. Fix 

ABSTRACT 

Singularities which arise in the solution to elliptic system are often of 

great technological importance. This is certainly the case in models of 

fracture of structures. In this report, we survey the way singularities are 

modeled with special emphasis on the effects due to nonlinearities. 
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Applications in Science and Engineering (ICASE), NASA Langley Research Center, 
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1. INTRODUCTION 

The key p r o p e r t y  of e l l i p t i c  systems is  t h a t  t h e i r  s o l u t i o n  t e n d s  t o  be 

as smooth as t h e  d a t a  and o t h e r  f a c t o r s  permi t .  Th i s  i s  i n  s t r i k i n g  c o n t r a s t  

t o  h y p e r b o l i c  systems where s i n g u l a r  behavior (e.g. ,  shocks)  can  arise even i f  

a l l  i n p u t s  are smooth. 

To i l l u s t r a t e  t h i s ,  cons ide r  the fo l lowing  model problem d e f i n e d  i n  a 

bounded r eg ion  ll of e: 

(1  01) d i v [ a  g rad+]  = f 

(1.2) B [ + l  = g 

The boundary o p e r a t o r  B has  t h e  form 

i n  C l  

on an. 

where v i s  t h e  o u t e r  normal t o  all. Thus t h e  i n p u t s  t o  t h i s  system are 

t h e  c o e f f i c i e n t s  a,  a, 0 ,  t h e  d a t a  f ,  g ,  and t h e  r e g i o n  ll. I f  a l l  of 

t h e s e  are smooth, then  t h e  same i s  t r u e  of t h e  s o l u t i o n  +. 

- 

This means t h a t  s i n g u l a r  behavior  can arise on ly  i n  t h e  cases where t h e  

i n p u t s  are i r r e g u l a r .  The fo l lowing  are examples of t e c h n i c a l  importance.  

Case 1: I r r e g u l a r  Boundaries.  The s t u d y  of f r a c t u r e  and c rack  

p ropaga t ion  invo lves  e l l i p t i c  s y s t e m s  of v a r i o u s  o r d e r s  depending on t h e  t y p e  

of problem being modelled [ l ]  - [ 2 ] .  Torsion problems are second o r d e r  ( l i k e  

( l . l ) ) ,  wh i l e  p l a t e s  i nvo lve  f o u r t h  order  e q u a t i o n s ,  and s h e l l  problems are 



-2- 

even of higher o rde r  [ 31  - [ 4 ] .  Never the l e s s ,  t he  r eg ion  R i n  q u e s t i o n  

g e n e r a l l y  con ta ins  a s l i t  as i n  F igure  1.1 with the  p o i n t  P being t h e  c r ack  

t i p .  I n  the l i n e a r ,  second o rde r  case (a  = 1 i n  (1 .1) )  i t  can be shown t h a t  

w i th  D i r i c h l e t  boundary c o n d i t i o n  (a = 0,  B = 1 i n  (1 .2) )  t h e  s o l u t i o n  4 

behaves l i k e  

nea r  t h e  crack t i p  ( r + O ) .  Thus the  g r a d i e n t  i s  s i n g u l a r  a t  t h e  c rack  t i p :  

The c o e f f i c i e n t  u of t h e  s i n g u l a r i t y  i s  of g r e a t  t e c h n i c a l  importance,  and 

i s  c a l l e d  the  stress i n t e n s i t y  f a c t o r .  Knowing i t  p e r m i t s  estimates on crack  

behavior  via  energy release rates [51  - 161. 

While s i n g u l a r  behavior  a t  co rne r s  i n  s o l i d  mechanics i s  of g r e a t  

t e c h n i c a l  s i g n i f i c a n c e ,  i n  f l u i d  mechanics co rne r  s i n g u l a r i t i e s  are o f t e n  

i r r e l e v a n t  a r t i f a c t s .  For example, l i n e a r  p o t e n t i a l  f low over  a f l a t  p l a t e  

i nvo lves  the same equa t ions  and geometry as d i scussed  above 171. I n  t h i s  

c a s e ,  t h e  g r a d i e n t  VI$ i s  t h e  v e l o c i t y  f i e l d  and hence (1.5) p r e d i c t s  a 

squa re  root s i n g u l a r i t y  a t  P. This  does not  occur  i n  real  f lows and i s  an 

a r t i f ac t  of t h e  l i n e a r i z a t i o n .  A proper  n o n l i n e a r  a n a l y s i s  shows t h e  v e l o c i t y  

s i n g u l a r i t y  is  a good d e a l  milder .  This  and o t h e r  n o n l i n e a r  e f fec ts  are 

d i scussed  i n  S e c t i o n  3.  



P 
r /  
0 

Figure  1.1. The S l i t  Region R: ( r , e )  are p o l a r  c o o r d i n a t e s  a t  P 

Case 2: Discont inuous  Boundary Operators .  S i n g u l a r i t i e s  can ar ise  when 

t h e  boundary c o n d i t i o n s  (1.2) a b r u p t l y  change type ,  or what i s  t h e  same, when 

t h e  c o e f f i c i e n t s  a ,  $ i n  ( 1 . 3 )  are d iscont inuous .  An example i s  g iven  i n  

F igu re  1.2. Observe t h a t  i n  t h i s  case the  Neuman c o n d i t i o n  

i s  a symmetry c o n d i t i o n ,  and hence t h i s  case i s  e x a c t l y  t h e  one r ep resen ted  i n  

F i g u r e  1.1. I n  p a r t i c u l a r ,  t h e  s i n g u l a r i t y  i s  desc r ibed  by (1 .4) .  Most of 

t h e  a p p l i c a t i o n s  i n  f l u i d  and s o l i d  mechanics invo lv ing  d i scon t inuous  boundary 

o p e r a t o r s  arise i n  t h i s  manner. 

F igu re  1 . 2 .  Discont inuous Boundary Cond'itions 



Case 3 :  Discont inuous C o e f f i c i e n t s .  D i s c o n t i n u i t i e s  i n  the  coef-  

f i c i e n t  a i n  (1 .1)  can a l s o  g e n e r a t e  s i n g u l a r i t i e s  i n  t h e  s o l u t i o n  9 .  

Cases of t e c h n i c a l  importance inc lude  d i f f u s i o n  problems i n  r e g i o n s  R con- 

s i s t i n g  of d i f f e r e n t  materials [ 8 ]  - [ 9 ] .  A t y p i c a l  example i s  shown i n  

F i g u r e  1.3. Using p o l a r  coord ina te s  ( r , e )  a t  t h e  po in t  P ,  i t  can be shown 

t h a t  t h e  s i n g u l a r i t y  behaves l i k e  

p l u s  higher o rde r  terms i n  r f o r  a s u i t a b l e  f u n c t i o n  0. The exponent 

depends on t h e  ( c o n s t a n t )  va lues  a of a i n  each of t h e  r e g i o n s  j 

Q. ( j  = 1,* . . ,4 ) .  I n  g e n e r a l ,  t h e s e  s i n g u l a r i t i e s  can be f a r  more s e r i o u s  
J 

t h a n  t h e  square  roo t  s i n g u l a r i t y  i n  (1 .4) .  In  p a r t i c u l a r ,  A > 0 can be 

made a r b i t r a r i l y  small f o r  a p p r o p r i a t e  cho ices  of a l , . . . , a 4  [91 .  

Figure  1.3. The reg ion  f o r  t h e  a p r i o r i  bound (2.22)  

Case 4': Nonsmooth Data. Cases where f o r  g i n  (1.1) - (1.2) are not  

smooth a r i s e  i n  s o l i d  mechanics when bod ies  are s u b j e c t  t o  random l o a d s  

[ l o ] .  To date,  t h e s e  have been b e s t  t r e a t e d  u s i n g  t h e  t echn iques  of s tochas-  

t i c  d i f f e r e n t i a l  equa t ions  s i n c e  s i n g u l a r  behavior  of t h e  s o l u t i o n  9 t e n d s  
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to be distributed over the entire region Q. These techniques are not 

treated in this paper, and the reader is referred to [ l l ]  for more details. 

The presence of singularities, such as described above, tend to 

significantly affect the rates of convergence for both finite difference as 

well as finite element schemes [ 12 ] .  Except for Case 4 cited above, two 

approaches have been used to treat the singular behavior. One, generally 

called the singular element method because of the way it is used in finite 

element schemes, attempts to incorporate the singular behavior into the 

approximation. The other approach uses grid refinement. 

To put this paper into proper perspective, it should be clearly noted 

that, in general, grid refinement is the best approach. This is particularly 

the case when adaptive strategies can be incorporated i i i t o  the approxiEatim 

( 1 3 1  - [ 1 5 ] .  Singular elements tend to be useful only in very special 

circumstances, some of which are cited below. However, the methodology used 

to derive singular elements still remains quite relevant. The point is a 

priori knowledge of the nature of the singularity can be of practical benefit 

even if this information is used only indirectly. This is certainly true of 

grid refinement as well as h, p,  and h-p versions of the finite element 

method [ 1 5 1  - [ 1 6 ] .  Because of this, these methodologies will receive the 

primary emphasis in this paper. 

Sections 2 and 3 are devoted to the types of singular behavior that can 

arise in elliptic systems. Section 3 considers nonlinear effects, and this 

material is apparently new. The final section concentrates on practical 

issues associated with singular elements along with selected numerical 

results. 
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2. SINGULAR BEHAVIOR IN LINEAR SYSTEMS 

For simplicity attention will be confined to problems with corner 

singularities. Interface problems (Case 3 in Section 1) are treated with 

similar techniques. 

In the linear case the starting point is the construction of explicit 

solutions using separation of variables for constant coefficient problems and 

simple geometries. Then using well developed techniques from the theory of 

partial differential equation (e.g., modifiers and frozen coefficients 

iterations) one can analyze problems with variable coefficients and rather 

broad classes of regions SI ([17] - [181). 

Apparently, the first researcher to realize that the form of 

singularities can be obtained by a local separation of variables was L. 

Williams [19]. To describe the results in this classic paper, consider the 

sectorial regxon shown in Figure 2.1 letting (r,0) denote polar coordinates, 

then (1.1) (with a = 1) becomes 

Assuming a solution of the form 

we are led to an eigenvalue problem for the exponent A and the function 

a :  

- + A  d2@ 2 @ = 0. 9 



The type of singularity obtained thus depends on the boundary conditions. 

Dirichlet conditions 

yield 

( 2  - 5 )  r* ‘sinue, sinaeO = 0. 

The relevant solution is the one with the smallest positive index u. This 

gives 

lr 

(a = r 80 sin(-) n e  
*O 

as the dominant singular term. Observe that V(a is finite at the corner 

point P, if and only if 0 < e o  < 1; i.e., reentrant corners (e, > a )  

yield unbounded gradients. In the case of a crack shown in Figure 1.1,  we 

have and hence ( 2 . 6 )  reduces to the square root singularity given 

by ( 1 . 4 ) .  

e o  = 2n, 

It is important to note that the order of the differential operator 

exerts an important influence on the type of singularities that are 

obtained. For example, consider the fourth order equation 

defined in the section shown in Figure 2 . 1 .  Assuming a solution of the form 
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w e  o b t a i n  

( 2 . 9 )  @ ( e )  = a.lsin(X + l)O + a2cos(X + l ) e  + blsin(X - l > 6  + b2cos(X - 1 ) e .  

The cons tan ts  a j ,  bj 

6 = 0 

depend on t h e  boundary cond i t ions  t o  be imposed on 

and 0 = eo .  For example, a long a clamped r a d i a l  edge one has  

( 2 .  l o )  

wh i l e  a simply supported edge g i v e s  

(2.11) w = 0, ae = 0, 

where 

(2.12) 

V being t h e  Poisson  r a t i o .  S u b s t i t u t i n g  i n t o  e i t h e r  of t h e  boundary 

cond i t ions  g ives  a n o n l i n e a r  equat ion  f o r  t h e  exponent A .  Except f o r  

special  cases t h i s  equa t ion  must be so lved  numer i ca l ly ,  i.e., e x p l i c i t  

formulas  fo r  t h e  exponents are not  known. Never the l e s s ,  a number of 

q u a l i t a t i v e  f e a t u r e s  of s o l u t i o n s  t o  t h e s e  equa t ions  are known (a long  wi th  

s p e c i f i c  numerical va lues  i n  t e c h n i c a l l y  impor tan t  cases I191 ). 



An impor tan t  po in t  i s  t h a t  s o l u t i o n s  X can be complex. This  i m p l i e s  

t h a t  o s c i l l a t o r y  behavior  i n  t h e  r a d i a l  d i r e c t i o n s  can occur .  This  i s  

p a r t i c u l a r l y  r e l e v a n t  f o r  cases where t h e  stress i n t e n s i t y  f a c t o r s  are 

approximated us ing  only nodal va lues  of the s o l u t i o n  $ .  

Thus 

t h e  s t r e s s  u given  by ( 2 . 1 2 ) ,  which is  t h e  ana log  of the  g r a d i e n t  f o r  t h e  

f o u r t h  o r d e r  case ,  d i s p l a y s  a squa re  root s i n g u l a r i t y .  

1 I n  t h e  case of a c rack  (F igu re  1 . 2 )  i t  can be shown t h a t  X = - 2 '  

e 

I 

I 

Figure  2 .1 .  The s e c t o r  Q 

Another i s s u e  of t e c h n i c a l  importance concerns t h e  e f f e c t  of dimension. 

The d i r e c t  g e n e r a l i z a t i o n  of W i l l i a m ' s  work t o  t h r e e  dimensions invo lves  the  

c o n i c a l  r e g i o n  shown i n  F igu re  2 .2 .  L e t t i n g  (r,O,+) denote  s p h e r i c a l  

coord ina te s , :one  seeks  a s o l u t i o n  of the form 
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In  the  second o rde r  c a s e ,  one is  aga in  l ead  t o  an e igenva lue  problem excep t  

now f o r  the Laplace-Beltrami o p e r a t o r  on t h e  boundary s u r f a c e  of R :  

( 2 . 1 4 )  a@ 1 a 2 Q  i a  
2 2 s ine ae a e  (sine-) + X(X + I ) @  = 0. - -+- -  

s i n  e a$ 

A . f u r t h e r  s epa ra t ion  of v a r i a b l e s  g ives  

where P s a t i s f i e s  t h e  Legendre equa t ion  

(2.16) 
2 - d [ ( l  - p 1 TI + + 1) - m = 0 2 dP 

dv 1 - u  

w i t h  p = cos0. I n  t h e  case of D i r i c h l e t  boundary c o n d i t i o n s ,  s o l u t i o n s  are 

ob ta ined  by r e q u i r i n g  

P r o p e r t i e s  of t h e s e  s o l u t i o n s  have been s t u d i e d  for t h e  case 0 < e o  < 'R 

[201. The dominant s i n g u l a r i t y  i s  independent of JI ( i . e . ,  m = 0 ,  a = - 2 

(2.15)).  In t h i s  case (2.16) can be so lved  w i t h  Legendre f u n c t i o n s  P = P 

and (2.17) reduces t o  a n o n l i n e a r  e q u a t i o n  f o r  A. Many of t h e  c h a r a c t e r -  

i s t ics  of the two d imens iona l  case reappea r  he re .  For example, 1041 i s  

f i n i t e  a t  P only i n  t h e  case of convex r e g i o n  (0 < e o  < 5 ) .  

i n  'R 

x 
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' /  

Interestingly, this analysis runs into trouble in the case of a crack 

e o  = n .  ("I Here, (2.17) does not have solutions with m = 0 since the only 

solutions to (2.16) with m = 0 which are finite on -1 < p < 1 are 

Legendre polynomials Pn(X = n) which satisfy IPn(*l)l = 1. The net 

result is the question of the completeness of the functions in which the 

singular behavior is described. Nevertheless, if one were to accept the 

limiting behavior as 8+n as valid, then the apparently ubiquitous square 

root singularity reemerges. 

- -  

/ 
I 0 

I 

IC/ '/ 

Figure 2.2. Spherical coordinates and the conical region n. 

* 
The case 80 = IT is exactly the one where the region W fails to satisfy an 
exterior cone condition [17] - [18]. Most of the results from the theory of 
partial differential equations as well as embedding theorems for Sobolev 
spaces are not valid in the absense of this condition. In two dimensions, 
this appears to be only a technical point limiting the analytical techniques 
used, while in three dimensions it seems t o  be a fundamental issue. 
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The open q u e s t i o n  of completeness of t h e  f u n c t i o n s  used t o  d e s c r i b e  

s i n g u l a r  behavior i n  t h r e e  dimensions is a l s o  p re sen t  i n  r eg ions  o t h e r  t han  

cones.  Thus a r igo rous  account of how s o l u t i o n s  behave nea r  p l a n a r  sl ices 

i n  Q ,  a case  of c o n s i d e r a b l e  t e c h n i c a l  importance i s  s t i l l  not  comple te ly  

known. 

Elementary s o l u t i o n s  such a s  those  desc r ibed  above can be used t o  o b t a i n  

r e s u l t s  f o r  r a t h e r  g e n e r a l  r eg ions  ll and f o r  problems wi th  v a r i a b l e  

c o e f f i c i e n t s .  T y p i c a l l y  t h i s  approach w i l l  no t  y i e l d  e x p l i c i t  behav io r ,  bu t  

r a t h e r  shows t h a t  t h e  s o l u t i o n s  l i e  i n  a p p r o p r i a t e  Sobolev spaces .  With most 

g r i d  ref inement  t echn iques ,  t h i s  i n fo rma t ion  i s  almost  as u s e f u l  as knowing 

t h e  e x p l i c i t  behavior .  

To f i x  i d e a s ,  cons ide r  t h e  second o r d e r  case (1.1) - (1.21, where a i s  

a smooth f u n c t i o n  of t h e  s p a t i a l  v a r i a b l e s  and a = 0 ,  B = 1 ( D i r i  c h l e  t 

boundary cond i t ions ) .  L e t  ll be t h e  r e g i o n  shown i n  F igu r  2 .3  which has  a 

c o r n e r  a t  P bu t  i s  o the rwise  smooth. Note t h a t  t h e  edges l e a d i n g  t o  P do 

no t  n e c e s s a r i l y  have t o  be s t r a i g h t .  For t h i s  r e g i o n  w e  i n t r o d u c e  t h e  

fo l lowing  weighted Sobolev spaces  i n  terms of t h e  r a d i a l  d i s t a n c e  r t o  P. 

Indeed,  let 

(2.18) 

be a weighted L2 f o r  t h e  g iven  exponent f3 E R The h ighe r  o r d e r  spaces  

invo lve  d e r i v a t i v e s .  Thus 

(2.19) 
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wi th  analogous d e f i n i t i o n s  f o r  llwll ( t  > 1) .  A p r i o r i  bounds on t h e  
t ,B 

s o l u t i o n  

( s e e  a l s o  

cond i t ions  

(2.20) 

and 

(2.21) 

$I were f i r s t  ob ta ined  i n  a fundamental  paper by Kondrat'ev [17] 

[ 1 8 ] ) .  A t y p i c a l  r e s u l t  i n  t h e  case of homogeneous boundary 

(g = 0 i n  (1 .2) )  shows t h a t  i f  

then t h e r e  is a c o n s t a n t  0 < C < 0 0 ,  depending only on t , B , n ,  and a ,  

f o r  which 

(2.22) < cIIfllt,B. 
t+2,B - no II 

The a n a l y s i s  r e q u i r e s  t h a t  Q s a t i s f y  an  e x t e r i o r  cone c o n d i t i o n  and hence 

t h e  i n t e r i o r  ang le  i s  res t r ic ted  t o  0 < e o  < 2a. This  i n e q u a l i t y  

can be v e r i f i e d  d i r e c t l y  i n  t h e  cases where t h e  e x p l i c i t  s i n g u l a r  behavior  is 

known. 

F igure  2.3 
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The p r a c t i c a l  use of a p r i o r i  bounds like (2.221, and w e l l  as use of t h e  

e x p l i c i t  s i n g u l a r  behavior  (when known) w i l l  be d i scussed  i n  the  l a s t  s e c t i o n .  

3. SINGULAR BEEAVIOR I N  NONLINEAR SYSTeKS 

I n  t h i s  s e c t i o n ,  w e  s h a l l  s tudy t h e  e f f e c t s  of n o n l i n e a r i t i e s  on s i n g u l a r  

behavior .  I n  t h i s  s e t t i n g ,  the  b a s i c  paradigm under ly ing  t h e  a n a l y s i s  i n  t h e  

l i n e a r  case,  namely s e p a r a t i o n  of v a r i a b l e s ,  i s  not a v a i l a b l e ,  hence d i f f e r e n t  

t echn iques  are needed. 

To f i x  i d e a s ,  we cons ide r  (1.1) w i th  D i r i c h l e t  boundary c o n d i t i o n s  

( a  = 0 ,  B = 1 )  i n  t h e  s e c t o r  shown i n  F igu re  2.1. We assume t h e  c o e f f i c i e n t  

depends on t h e  g r a d i e n t  V$ as 

For t h e  problem t o  be e l l i p t i c ,  we need 

d 2 - [ a ( t >  tl > 0 d t  

un i formly  throughout R . 
An e a r l y  approach t o  t h i s  problem was g iven  by Tolksdorf 1211. H e  looked 

for  s o l u t i o n s  of t h e  form 

A 
( 3 . 3 )  t$ = r @ ( e > ,  

and showed t h a t  A ,  Q are r e l a t e d  through a n o n l i n e a r  e igenva lue  problem. 



A key parameter in the latter is the number 

( 3 . 4 )  

A s  will be seen below, this number determines the nonlinear effects on the 

singularity. Observe that q = 0 in the linear case, and for this system to 

be elliptic it is necessary that 

q > - T .  1 ( 3 . 5 )  

Because of the nonlinearities, it is not possible to get explicit 

solutions to the nonlinear eigenvalue problem. However, using maximum 

principle arguments with comparison functions, Tolksdorf was able to obtain 

the following bounds on the minimal exponent A in ( 3 . 3 ) :  

where 

( 3 . 7 )  

and 

with e o  = a o r .  
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Unfortunately, as will be shown below, the inequalities in ( 3 . 6 )  are not 

strict except in the linear case q = 0. Nevertheless, the results do contain 

useful information. For example, 0 < A < 1 for reentrant corners 

(n < e o  < 2n), and hence lvol is singular in these cases. Moreover, this 

is the only property that survives from the linear case, and the nonlinear 

terms definitely affect the asymptotic behavior as r+O. It is also 

noteworthy that this approach can also be used in three and higher dimensions. 

Sharp results can be obtained f o r  the case of two dimensions. The 

starting point is a fundamental paper by L. Lehman [ Z Z ] .  This work was 

limited to the linear case, however, the function theoretic approach used did 

not require the explicit construction of solutions via separation of 

variables. The exact form of the singularity was obtained, but in an indirect 

manner using appropriate transformations and analytic continuation. This is 

why the results are limited to planar regions; however, they do point the way 

to an approach for the nonlinear case via a hodograph transformation. 

In particular, we let u,v denote the components of the gradient V$ 

and rewrite (1.1) as 

v z aU V V v 2  a v I o  
ay (a + a u - + (2a uv) aU + (2a uv) 

ax ay + (a + a v (3.9) 

(3.10) 

da 
dt where a' = - . The hodograph transformation takes the form 

(3 .11)  x = x(u,v), y = y(u,v). 
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A t  p o i n t s  where the  Jacob ian  of the t ransformat ion  

a U  a v  a U  a v  - a24  a 2 4  - a 2 +  
(3.12) J = a Y 7 y - - 7 j x Y - 7 7  ax  a y  xzq  

i s  nonzero,  we have 

V V v 2  a x - ,  a y  - (2a uv - (2a uv) ?I+ ( a  + 2a v ( a + 2 a u  ) -  - - a U  a t  a v  (3.13) 

- - - -  a x  a Y  - 0. 
av  a u  (3.14) 

Because t h e  last r e l a t i o n ,  a p o t e n t i a l  JI can be in t roduced  s o  t h a t  

- -  - a+ = y ,  
av - x, 

a U  
(3.15) 

This  g ives  

(3.16) 

Thus t h e  hodograph t a k e s  t h e  o r i g i n a l  non l inea r  problem i n t o  a l i n e a r  one. 

Observe t h a t  e l l i p t i c i t y  of t h e  equat ion  i s  not  a f f e c t e d  by t h e  

t r ans fo rma t ion .  

Hodograph t r ans fo rma t ions  have been used i n  a number of problems [71.  

The t e c h n i c a l  d i f f i c u l t y  has  t y p i c a l l y  been i n  d e r i v i n g  boundary cond i t ions  i n  

t h e  hodograph plane.  I n  f a c t ,  t he  t r a d i t i o n a l  approach i n  f l u i d  dynamics is 

t o  l e t  t h e  boundary cond i t ions  s o  obtained a c t u a l l y  d e f i n e  t h e  problem t h a t  i s  

be ing  so lved  17, Ch. XX]. Here no such problems arise, as can be a n t i c i p a t e d  
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from a c a r e f u l  s tudy  of Lehman’s work. The cases of a r e e n t r a n t  (e, > n) o r  

convex ( e o  < n )  corne r  a r e  d i f f e r e n t ,  s o  f o r  b r e v i t y  w e  cons ide r  on ly  t h e  

former s ince  i t  is  t h e  most important .  

The boundary t r a n s f o r m a t i o n s  under t h e  hodograph are g iven  i n  F igure  

3.1. I n  p a r t i c u l a r ,  t h e  s e c t o r  n: 0 < 8 < 8, g e t s  mapped i n t o  a double  

cone il with a n g l e  e o  - n .  

- -  

u = p c o m ,  v = p s i n w .  ( 3 . 1 7 )  

It can be shown t h a t  (3.16) reduces  t o  

( 3 . 1 8 )  ( 2 1 a 4  
a V  ) a J, + L a *  + , T - s =  0. 

a + 2a p 2  ap2 p aw 

* 
Moreover, D i r i c h l e t  boundary c o n d i t i o n s  $ = 0 on a i l  can be used.  



Tolksdorf’s work shows t h a t  V$ i s  s i n g u l a r  a t  the  corner  p o i n t  r = 

0. Thus i n  t h e  hodograph plane i t  i s  the behavior a t  p = m which is  

r e l e v a n t .  Since t h e  c o e f f i c i e n t  i n  (3 .18)  i s  smooth, Kondret’ev’s work [ 1 7 ]  

shows one can f r e e z e  i t  i n  t h e  neighbor of t h e  s i n g u l a r i t y ;  i .e. ,  r e p l a c e  i t  

wi th  

(3.19) 

where q 

problem 

(3.20) 

can now be 

( 3 . 2 1 )  

we o b t a i n  

( 3 . 2 2 )  

a 1 l i m  ( V ) = 1 + 2 q ’  
t + m  a + 2a p 2  

is  t h e  index  ( 3 . 4 )  appearing i n  Tolksdorf’s work. The r e s u l t i n g  

solved by s e p a r a t i o n  of v a r i a b l e s .  I n  p a r t i c u l a r ,  l e t t i n g  

U wn 
JI = p s i n (  e o  - 

2 2q + 1 u = q +  q + 
(ao - l l L  0 u = f uo, 9 

where e o  = aon . Since  i t  i s  the  behavior a t  QD which i s  r e l e v a n t ,  w e  

Express ing  t h e  results i n  terms of t h e  r a d i a l  c o o r d i n a t e  take u = ‘-a 

r i n  the  p h y s i c a l  p l ane ,  we have 

0‘ 

( 3 . 2 3 )  
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Hence 

( 3 . 2 4 )  
ao/(ao + 1) - 1 

V4-r 9 

or what is the same the exact exponent X in ( 3 . 3 )  is given by 

( 3 . 2 5 )  2q + 1 

(ao - 1) 
a = q 2 + J q 2 +  2 .  

aO 
0 A =  1 + a o ’  

Observe that i n  terms of the lower bound X I  and upper bound cited 

above we have 

( 3 . 2 6 )  X 1  < X < X 2  

except i n  the linear case (q  = 0) where 

1 
a 

; x 1 = X = X 2 - - .  - 
0 

Consider now the case of a slit where a = 2. The exponent reduces 

to 
0 

, 

( 3  -26 )  

Observe that if q is negative, then 

( 3 . 2 7 )  



i.e., the singularity is stronger than that occurring in the associated linear 

problem. The limiting case is q = - - and the problem is no longer 

elliptic for smaller values of q. That this type of analysis fails is to be 
2 ’  

anticipated. Indeed, the equations will be hyperbolic in such cases, and the 
I 
I presence of real charcteristics means that the type of singularity obtained 

1 depends on information in the far field away from the singular point. 

I If, on the other hand, q > 0 we have a situation where the nonlinear 

terms smooth the singularity; i.e., 

1 
2 x > -  . (3.28) 

A case of interest is compressible potential fiow [ 7 j  where 

(3.29) 

It is readily seen that 

(3.30) 

in this case, and so 

(3.31) 1 + 6  x = 7 .  

For dry air 6 = 1.405 and X is approximately .9 .  A s  far as numerical 

approximations are concerned, this is a far less serious singularity than 

X = .5 predicted for linear flows. 
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4. PRACTICAL CONSIDERATIONS 

To f i x  i d e a s ,  cons ide r  t h e  p l ana r  reg ion  shown i n  F igure  2 . 3 ,  and t h e  

l i n e a r  second o rde r  case .  

A s  f a r  a s  (nonadapt ive)  mesh re f inement  is  concerned,  t h e  s t a r t i n g  p o i n t  

i s  t h e  i d e n t i f i c a t i o n  of a r e g i o n  about t h e  s i n g u l a r  po in t  where mesh 

re f inement  i s  used. An impor tan t  p r a c t i c a l  c o n s i d e r a t i o n  i s  t h a t  w i th  l o c a l  

mesh refinement t h e  number of p o i n t s  used i n  Rs need only  grow l i k e  

O( I l n h l L ) ,  where h is t h e  f a r  f i e l d  mesh spac ing .  The key t o  t h i s  i s  t h e  

e x i s t e n c e  of an a p r i o r i  bound l i k e  ( 2 . 2 2 ) .  For s i m p l i c i t y ,  we t a k e  t h e  

case t = 0 so  

The g r i d  goes as fo l lows .  For  t r i a n g l e s  a d j a c e n t  t o  P t h e  d iameter  6 ,  

s a t i s f i e s  

1 
1 - B  6 < ( c o n s t a n t ) h  

T h i s  i s  increased by a c o n s t a n t  f a c t o r  u n t i l  t h e  f a r  f i e l d  uniform g r i d  wi th  

s p a c i n g  h i s  obta ined .  Gr ids  of t h i s  t ype  have been used i n  1233 f o r  

s t a n d a r d  f i n i t e  element methods and i n  [ 4 ]  for t hose  based on least  squa re  

approximations.  

It can be shown t h a t  f o r  such g r i d s  t h e  approximat ion  + n  u s i n g  l i n e a r  

e lements  s a t i s f i e s  

( 4 . 3 )  
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Numerical evidence shows that if approximate difference quotients are used, 

to the stress intensity factor u can be then approximations u 

obtained satisfying 

h 

in the case of a slit region (Figure 1.1) [25]. It is a point of practical 

significance that the form of the singularity must be known in order to 

establish the relevant difference approximation for u . Path independent 

J-integrals [ 2 6 ]  can be used as an alternative, however, they produce 

approximations which converge at lower rates, typically O(h) when using 

linear elements. 

n 

In a singular element approach, one seeks approximations in the form 

( 4 . 5 )  

is the (known) singular function, oh is the intensity of the where 

singularity (to be computed), and N j  are the piecewise linear nodal 

functions. Since variational methods typically yield best approximations (in 

in effect substracts out the singularity; suitable norms), the term 

i.e., for a suitable number u (the exact intensity) 

6 s  

'h's 

and thus . 0 - can be approximated by piecewise linear functions on a 

regular grid. Stated differently 
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i n f  ll$ - q $ s  - 1 5 N 11 < Ch 114 - q$s l12 ,0 .  
i i 1,0 - 

5 

T h i s  means t h e  4 h  computed by a f i n i t e  element approximation w i l l  s a t i s f y  

I n  add i t ion ,  t he  i n t e n s i t y  u h  i n  ( 4 . 5 )  has been observed t o  converge a t  

t h e  rate found i n  ( 4 . 4 )  ( 2 5 1 .  

S u b s t i t u t i o n  of ( 4 . 5 )  i n t o  a v a r i a t i o n a l  p r i n c i p l e  t y p i c a l l y  l e a d s  t o  a 

m a t r i x  problem of t h e  form 

where Kll i s  a r e g u l a r  f i n i t e  e lement  ma t r ix ,  Kls  c o n t a i n s  i n n e r  p roduc t s  

w i t h  of Nj with 4 s ,  while t h e  number Kss i s  t h e  i n n e r  product  of 

i t s e l f .  Note t h a t  Ksl  i s  1 x N where N i s  t h e  number of Nj whose 

. For t h e  above e r r o r  estimates t o  be suppor t  i n t e r s e c t s  t h e  suppor t  of 

be f i x e d  uni formly  v a l i d  as bo, i t  is  necessa ry  t h a t  t h e  suppor t  of 

independent of h. Thus N grows l i k e  O(h'2) as h + O .  

+S 

+S 

4s  

One of t h e  e a r l y  f e a r s  about  t h e  u s e  of s i n g u l a r  f u n c t i o n s  w a s  t h a t  one 

might  be g iv ing  up s t a b i l i t y  i n  o r d e r  t o  g a i n  greater accuracy.  While i t  is  

true than the  c o e f f i c i e n t  matrix i n  ( 4 . 9 )  has  a f a r  l a r g e r  c o n d i t i o n  number 

t h a t  t h e  s tandard  s t i f f n e s s  matrix K l l ,  t h i s  h a s  no t  c r e a t e d  .problems i n  

p r a c t i c e  1251. For example, i n  d i r e c t  e l i m i n a t i o n  t h e  problems are i s o l a t e d  



in a one dimensional subspace. Indeed, the matrix in (4.9) admits the 

factorization 

(4.10) 

where 

(4.11) K l l  = L V 11 11 

= T  
yslvll  Y = T  Ksl - “1 s ( 4 . 1 2 )  

K - L  V = L  V 
ss sl 1s ss ss 

(4.13) 

Thus the bulk of the computation is in the factorization of the standard 

stiffness matrix Kll in (4.11). The bordered parts Lsl, Vsl are obtained 

through the (stable) backsolves (4.12), and the only part of the calculation 

where the instability occurs in the 1 x 1 problem (4.13) (here Lss = 1 

and Vss ,  Kss - LslVls are numbers). 
is the only 

quantity of interest, and this is frequently the case, then half of the 

backsolves can be omitted. Indeed, to get u from ( 4 . 9 )  one backsolves 

‘h Also, note that if the stress intensity factor 

h 

(4.14) L y = f ,  L w = f  - L s 1 2  11- - ss S 
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f o r  y and w .  Then - 

(4.15) 

The remaining backsolves ,  i . e . ,  

v u = w .  
ss 

(4.16) 

can be omit ted.  

are t h e  same a s  t h a t  h The rates of convergence f o r  I # h  and u 

observed f o r  t h e  case of g r i d  ref inement  1121. Thus a s y m p t o t i c a l l y  as h+O 

t h e r e  is not a g r e a t  d e a l  of d i f f e r e n c e  between t h e  two approaches.  Although, 

as noted e a r l i e r ,  t h e  s u p e r i o r i t y  of g r i d  ref inement  emerges as a d a p t i v i t y  i s  

incorpora ted  i n t o  t h e  approximation.  

I n  p r a c t i c a l  terms, t h e  s i n g u l a r  f u n c t i o n  approach has  t h e  advantage  of 

fewer  backsolves ( i n  t h e  case where only t h e  i n t e n s i t y  i s  d e s i r e d ) ,  bu t  

s u f f e r s  the  d i sadvan tage  of r e q u i r i n g  t h a t  n o t  on ly  i n n e r  products  of nodal  

f u n c t i o n s  Nj be e v a l u a t e d ,  but  a l s o  i n n e r  p roduc t s  of t h e  more compl ica ted  

s i n g u l a r  func t ions  I # s .  Both of t h e s e  e f f e c t s  c o n t r i b u t e  t o  t h e  lower o r d e r  

terms i n  the o v e r a l l  work e f fec t - -cons idered  as a f u n c t i o n  of - -- and thus  

both e f f e c t s  are n e g l i g i b l e  i n  t h e  l i m i t  as h+O. 

h 

On the o t h e r  hand, f o r  modest accuracy  requi rements  (h not  small)  t h e  

sav ings  i n  backsolves  t ends  t o  be a s i g n i f i c a n t  e f f e c t .  It i s  e x a c t l y  i n  

t h e s e  cases where s i n g u l a r  e lement  methods have proven t o  be u s e f u l .  To c i t e  

a s p e c i f i c  numerical  example, c o n s i d e r  t h e  problem d e s c r i b e d  i n  F i g u r e  4.1. 

Th i s  problem has been used as a tes t  problem f o r  a l a r g e  number of d i f f e r e n t  



~ 

-27- 

numerical methods ( [ 2 5 1  - [30]), and It is known that the stress intensity 

factor is 

u = .1917 

(to the number of decimals shown). Using a single singular function on a 

uniform grid with h = (65 unknowns) gives 

a = ,1862 h 

while a f3-grid refinement with 16 unknowns (and over three times the CPU 

cycles and storage requirements) gave 

u = ,1621 h 

with finer grids; however, the differences in overall work for a given 

accuracy rapidly disappears [ 2 7 ] .  

Another special case where singular elements have proven useful is what 

could be called an "h-p version" of the singular element method. Here one 

uses more singular functions than would be actually needed, not only to 

substract out the singularity but a l s o  to approximate. For example, in the 

problem cited above, the use of 8 singular functions and a uniform grid with 

h = gives 1 

a = .1916 h 

(see [271 for this and other examples). 
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0 
a @  
aX 
- =  - 0  - -  

a x  

Figure 4.1. Test Problem 
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