83,943 research outputs found
PENENTUAN MODEL RETURN HARGA SAHAM DENGAN MULTI LAYER FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA RESILENT BACKPROPAGATION (Studi Kasus : Harga Penutupan Saham Unilever Indonesia Tbk. Periode September 2007 – Maret 2015)
Determination of a return of stock price model is often associated with a process of forecasting for future periods. A method that can be used is neural network. The use of neural network in the field of forecasting can be a good solution, but the problem is how to determine the network architecture and the selection of appropriate training methods. One possible option is to use resilent back propagation algorithm. Resilent back propagation algorithm is a supervised learning algorithm to change the weights of the layers. This algorithm uses the error in the backward direction (back propagation), but previously performed advanced stage (feed forward) to get the error. This algorithm can be used as a learning method in training model of a multi-layer feed forward neural network. From the results of the training and testing on the share return of stock price PT. Unilever Indonesia Tbk. data obtained MSE value of 0.0329. This model is good to use because it provides a fairly accurate prediction of the results shown by the proximity of the target with the output.
Keywords : return, neural network, back propagation, feed forward, back propagation algorithm, weight, forecasting
Forecasting of financial data: a novel fuzzy logic neural network based on error-correction concept and statistics
First, this paper investigates the effect of good and bad news on volatility in the BUX return time series using asymmetric ARCH models. Then, the accuracy of forecasting models based on statistical (stochastic), machine learning methods, and soft/granular RBF network is investigated. To forecast the high-frequency financial data, we apply statistical ARMA and asymmetric GARCH-class models. A novel RBF network architecture is proposed based on incorporation of an error-correction mechanism, which improves forecasting ability of feed-forward neural networks. These proposed modelling approaches and SVM models are applied to predict the high-frequency time series of the BUX stock index. We found that it is possible to enhance forecast accuracy and achieve significant risk reduction in managerial decision making by applying intelligent forecasting models based on latest information technologies. On the other hand, we showed that statistical GARCH-class models can identify the presence of leverage effects, and react to the good and bad news.Web of Science421049
Predictive control of wind turbines by considering wind speed forecasting techniques
A wind turbine system is operated such that the points of wind rotor curve and electrical generator curve coincide. In order to obtain maximum power output of a wind turbine generator system, it is necessary to drive the wind turbine at an optimal rotor speed for a particular wind speed. A Maximum Power Point Tracking (MPPT) controller is used for this purpose. In fixed-pitch variable-speed wind turbines, wind-rotor parameters are fixed and the restoring torque of the generator needs to be adjusted to maintain optimum rotor speed at a particular wind speed for optimum power output. In turbulent wind environment, control of variable-speed fixed-pitch wind turbine systems to continuously operate at the maximum power points becomes difficult due to fluctuation of wind speeds. In this paper, wind speed forecasting techniques will be considered for predictive optimum control system of wind turbines
- …
