889,692 research outputs found
A smart vision sensor for detecting risk factors of a toddler's fall in a home environment
This paper presents a smart vision sensor for detecting risk factors of a toddler's fall in an indoor home environment assisting parents' supervision to prevent fall injuries. We identified the risk factors by analyzing real fall injury stories and referring to a related organization's suggestions to prevent falls. In order to detect the risk factors using computer vision, two major image processing methods, clutter detection and toddler tracking, were studied with using only one commercial web-camera. For practical purposes, there is no need for a toddler to wear any sensors or markers. The algorithms for detection have been developed, implemented and tested
Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.
Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems
Fall Detection Analysis Using a Real Fall Dataset
International Conference on Soft Computing Models in Industrial and Environmental Applications (13th. 2018. San Sebastián
Matching pursuit-based compressive sensing in a wearable biomedical accelerometer fall diagnosis device
There is a significant high fall risk population, where individuals are susceptible to frequent falls and obtaining significant injury, where quick medical response and fall information are critical to providing efficient aid. This article presents an evaluation of compressive sensing techniques in an accelerometer-based intelligent fall detection system modelled on a wearable Shimmer biomedical embedded computing device with Matlab. The presented fall detection system utilises a database of fall and activities of daily living signals evaluated with discrete wavelet transforms and principal component analysis to obtain binary tree classifiers for fall evaluation. 14 test subjects undertook various fall and activities of daily living experiments with a Shimmer device to generate data for principal component analysis-based fall classifiers and evaluate the proposed fall analysis system. The presented system obtains highly accurate fall detection results, demonstrating significant advantages in comparison with the thresholding method presented. Additionally, the presented approach offers advantageous fall diagnostic information. Furthermore, transmitted data accounts for over 80% battery current usage of the Shimmer device, hence it is critical the acceleration data is reduced to increase transmission efficiency and in-turn improve battery usage performance. Various Matching pursuit-based compressive sensing techniques have been utilised to significantly reduce acceleration information required for transmission.Scopu
Recognition of false alarms in fall detection systems
Falls are a major cause of hospitalization and injury-related deaths among the elderly population. The detrimental effects of falls, as well as the negative impact on health services costs, have led to a great interest on fall detection systems by the health-care industry. The most promising approaches are those based on a wearable device that monitors the movements of the patient, recognizes a fall and triggers an alarm. Unfortunately such techniques suffer from the problem of false alarms: some activities of daily living are erroneously reported as falls, thus reducing the confidence of the user. This paper presents a novel approach for improving the detection accuracy which is based on the idea of identifying specific movement patterns into the acceleration data. Using a single accelerometer, our system can recognize these patterns and use them to distinguish activities of daily living from real falls; thus the number of false alarms is reduced
Anti-Fall: A Non-intrusive and Real-time Fall Detector Leveraging CSI from Commodity WiFi Devices
Fall is one of the major health threats and obstacles to independent living
for elders, timely and reliable fall detection is crucial for mitigating the
effects of falls. In this paper, leveraging the fine-grained Channel State
Information (CSI) and multi-antenna setting in commodity WiFi devices, we
design and implement a real-time, non-intrusive, and low-cost indoor fall
detector, called Anti-Fall. For the first time, the CSI phase difference over
two antennas is identified as the salient feature to reliably segment the fall
and fall-like activities, both phase and amplitude information of CSI is then
exploited to accurately separate the fall from other fall-like activities.
Experimental results in two indoor scenarios demonstrate that Anti-Fall
consistently outperforms the state-of-the-art approach WiFall, with 10% higher
detection rate and 10% less false alarm rate on average.Comment: 13 pages,8 figures,corrected version, ICOST conferenc
Development of a user-adaptable human fall detection based on fall risk levels using depth sensor
Unintentional falls are a major public health concern for many communities, especially with aging populations. There are various approaches used to classify human activities for fall detection. Related studies have employed wearable, non-invasive sensors, video cameras and depth sensor-based approaches to develop such monitoring systems. The proposed approach in this study uses a depth sensor and employs a unique procedure which identifies the fall risk levels to adapt the algorithm for different people with their physical strength to withstand falls. The inclusion of the fall risk level identification, further enhanced and improved the accuracy of the fall detection. The experimental results showed promising performance in adapting the algorithm for people with different fall risk levels for fall detection
- …
