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Abstract

There is a significant high fall risk population, where individuals are susceptible

to frequent falls and obtaining significant injury, where quick medical response

and fall information are critical to providing efficient aid. This article presents

an evaluation of compressive sensing techniques in an accelerometer-based in-

telligent fall detection system modelled on a wearable Shimmer biomedical em-

bedded computing device with Matlab. The presented fall detection system

utilises a database of fall and activities of daily living signals evaluated with

discrete wavelet transforms and principal component analysis to obtain binary

tree classifiers for fall evaluation. 14 test subjects undertook various fall and

activities of daily living experiments with a Shimmer device to generate data for

principal component analysis-based fall classifiers and evaluate the proposed fall

analysis system. The presented system obtains highly accurate fall detection re-

sults, demonstrating significant advantages in comparison with the thresholding

method presented. Additionally, the presented approach offers advantageous fall

diagnostic information. Furthermore, transmitted data accounts for over 80%

battery current usage of the Shimmer device, hence it is critical the acceler-

ation data is reduced to increase transmission efficiency and in-turn improve
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battery usage performance. Various Matching pursuit-based compressive sens-

ing techniques have been utilised to significantly reduce acceleration information

required for transmission.

Keywords: Fall detection, compressive sensing, multiresolution analysis,

principal component analysis, acceleration signal evaluation, wearable device

1. Introduction

Studies demonstrate elderly individuals pose a significant risk to falling [1,

2], in addition to individuals with medical conditions, for example, gait [3]

and neurodegenerative disorders, including epilepsy [4] and Parkinson’s disease

[5]. These high-risk individuals are significantly susceptible to obtaining severe5

injuries from fall occurrence, including severe tissue damage and broken bones

[6]. Sustained injuries are of high-importance as fall related injuries are a leading

cause of death among elderly individuals [7, 8], while individuals who suffer

from epilepsy are highly susceptible to significant brain injury during epileptic

seizures [9]. Furthermore, these individuals may live alone as is frequent with10

elderly individuals and could become unable to call for help or seek medical aid

due to sustained injuries during fall occurrence. Additionally, posttraumatic

stress has been linked to individuals after fall occurrence [10], where adults over

the age of 65 suffer additional psychological depression and stress, significantly

contributing to a lower quality of life [11].15

A fall detection system can be utilized to detect fall occurrence, its inten-

sity, direction of impact and quickly raise the alarm for medical treatment if

required. Additionally, an automatic fall detection system could lead to reduced

fall related psychological stress and less severe head injuries occurring during

epileptic seizures as the individual will receive quick medical aid appropriate to20

the type of fall detected.

Accelerometers can be used to automatically detect falls through different

signal evaluation techniques [12]. Wearable biomedical tri-axial accelerometer-

based fall detection devices transmit monitored data to a base station receiver
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for signal processing and fall detection. Accelerometer-based fall detection sys-25

tems frequently detect fall occurrences through thresholding a parameter, such

as absolute acceleration magnitude [13] or wavelet acceleration sum-vector [14]

against an arbitrary value. This arbitrary threshold value within literature

is frequently determined from analysis of preknown user-sepcific fall signals

[15], where accuracy and false positives are significant issues [16]. Intelligent30

fall detection systems utilising classifiers have more recently been utilised for

accelerometer-based fall detection [17]. Accelerometer features including the

raw acceleration signal [18] and acceleration signal characteristics [19] have been

evaluated for fall acceleration signal classification. Various intelligent machine

learning methods have been investigated for accelerometer-based fall detection35

applications, including k-nearest neighbours [20], artificial neural networks [21]

classifiers and more recently combined classifier systems [22].

Small, low-cost and wearable biomedical embedded computer systems and

devices such as the wireless Shimmer device [23] with tri-axial accelerometers,

electrocardiography and gyroscope sensors are highly suited for various wear-40

able biomedical and health implementations, such as fall evaluation. Shimmer

devices have previously been utilised to detect falls with a reconfigurable high-

throughput fall detection system [24, 14]. However, wearable accelerometer-

based fall detection systems have been reported to obtain low-accuracy results

[12] in addition to platform power constraints. The Shimmer biomedical de-45

vice processor, sensors and Bluetooth radio require 5 mA, 4.89 mA and 45 mA

current consumption respectively during active use, where the processor has a

maximum possible current consumption of 6 mA. Furthermore, the consump-

tion of total current utilised during active device operation demonstrates the

processor and sensors to account for 9.11% and 8.91% of current consump-50

tion, while Bluetooth radio utilises a vastly significant 81.98% of total current

consumption. Therefore it is critical, efficient data transmission occurs to im-

prove power efficiency. Compressive sensing techniques [25] can be utilised to

significantly reduce acceleration data transmission from the Shimmer device.

Furthermore, compressive sensing has been utilised within accelerometer-based55
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fall detection methods to reduce the required acceleration data [26] in addition

to significantly improving the Shimmer devices battery life through decreasing

data transmission power requirements [27]. However, compressive sensing has

only been utilised and evaluated in threshold-based systems, where currently

literature indicates there has been no evaluation of compressive sensing applied60

to accelerometer-based features for intelligent fall detection systems.

Compressive sensing is utilised to obtain a solution from an underdetermined

linear system through the advantage of signal sparsity [25]. Prior knowledge that

the data are compressible allows for data to be acquired with fewer measurement

samples than required with standard Nyquist-Shannon measurement sampling65

[28] through measuring a sparse signal of minimum samples that contain sig-

nificant signal information. The resulting reduced number of samples required

for signal representation is proportional to the desired compression rate and

therefore obtains significant reduction in the number of measurement samples

required. The corresponding recovery process of sparse signals generally in-70

volves computationally intensive and greedy algorithms which iteratively build

an approximated signal solution through updating signal parameters every cycle

iteration during the signal recovery process. Greedy algorithms typically do not

provide the optimum solution to signal recovery, however they can outperform

typical high-resolution accuracy of least-square solutions [29].75

Matching pursuit (MP) [30] is a greedy algorithm that selects a suitable vec-

tor element to remove from a measurement matrix of the received sparse signal,

then in each following iteration another suitable element is selected until an ap-

proximated signal is recovered. Orthogonal MP (OMP) [29] is an improvement

of MP with reduced iterations at the cost of increased complexity, where OMP80

selects an optimal index vector element and updates the subspace columns every

iteration cycle. OMP updates the subspace column vectors through orthogo-

nally projecting the measurement vector. Other greedy sparse signal recovery

algorithms have been proposed, which are often derived from OMP. MP and

OMP select a single index vector column during each iteration cycle, resulting85

in an M -sparse vector requiring a minimum of M iterations for signal approx-
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Figure 1: Simplified diagram of the proposed compressive sensing accelerometer-based intel-

ligent fall detection system.

imation. Stagewise OMP (StOMP) [31] improves upon this limitation through

being able to select multiple columns during each iteration step. Similarly, reg-

ularized OMP (ROMP) [32] is another multiple column selection sparse signal

recovery algorithm, however ROMP selects vectors with a similar magnitude90

value.

The proposed compressive sensing accelerometer-based intelligent fall detec-

tion system implemented on a Shimmer biomedical embedded device is pre-

sented in Fig. 1, where the system’s intelligent component is derived from anal-

ysis of a fall signal database to generate a fall detection and analysis classifier.95

The proposed system captures tri-axial acceleration signals from the wearable

Shimmer device sensors. The acceleration signals are then transformed to the

wavelet domain and made sparse within the Shimmer embedded computing de-

vice, before being transmitted for fall signal analysis. The received sparse signal

is recovered through compressive sensing techniques to obtain the wavelet accel-100

eration signal. The recovered wavelet signal is then classified, based on previous

fall and activities of daily living (ADL) signals to determine fall occurrence,

strength and direction. The presented article is a Matlab-based investigation,

where the fall and ADL data obtained with the Shimmer device are recorded in

Matlab. The wavelet transform and sparsification stages proposed for Shimmer105

device implementation, in addition to the base stations sparse signal recovery

and fall analysis stages are modelled and investigated within Matlab.

The contributions of the work presented in this paper describes an intelligent,

efficient and robust fall detection and diagnostic system utilising compressive
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sensing with the wearable Shimmer accelerometer device. The presented fall110

detection system implements previously evaluated ADL and fall acceleration

signals to produce robust classifiers for determining fall occurrence, strength-

type (hard and soft classes) and direction. Additionally, the intelligent fall de-

tection system is evaluated against threshold-based fall detection to determine

the proposed systems advantages. Furthermore, the presented fall detection115

system utilises compressive sensing to significantly improve data transmission

efficiency within the Shimmer accelerometer device. Literature indicates com-

pressive sensing with accelerometer-based fall detection has currently only been

investigated within threshold-based techniques [26, 27]. The effect of various

compressive sensing techniques have been investigated to determine the effect120

on the intelligent classifier-based fall detection system results and performance.

The importance of fall monitoring and the user-wearable Shimmer device

for accelerometer-based fall detection have been discussed. Additionally, the

proposed system for efficient fall detection and analysis with the importance of

compressive sensing for transmission efficiency have been introduced and briefly125

discussed in Section 1, while the rest of the paper is organised as follows: Section

2 describes the experimental set-up and acceleration data collection, Section 3

details standard magnitude threshold fall detection and principal component

analysis (PCA) application for feature selection and analysis together with de-

cision tree-based fall detection and analysis. Section 4 describes the sparse130

signal generation and compressive sensing of the presented fall detection sys-

tem. Experimental results are presented in Section 5, while Section 6 discusses

the robust and efficient fall analysis system realisation and obtained results.

2. Methodology

Fall and ADL acceleration data were obtained from an experimental test135

group of n healthy subjects with differing weight and height. The test group

undertook fall-based activities onto a protective region with a padded mat.

Additionally, the test group undertook real-world-based ADL tasks. All subjects
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performed the required tasks, where no injuries occured. The experimental test

subject group consisted of 14 individuals: 2 female and 12 male. The subject140

test group data for age, weight and height with mean-average and standard

deviation are demonstrated in Table 1.

The Shimmer biomedical device was fastened to the subjects chest in the

same position across all test subjects and throughout the various experimen-

tal fall and ADL activities performed. The fall activities performed with test145

subjects consisted of hard and soft impacts. Fall impact type examples are

presented in Fig. 2. Hard impact falls consist of subjects falling from standing

position, demonstrated in Fig. 2.a, where subjects would not attempt to break

their fall and impact directly with the ground as demonstrated in Fig. 2.b. Sim-

ilarly, soft impact falls consist of subjects falling from standing position, where150

subjects would attempt to break their fall before impact, such as falling onto

their knees, as demonstrated in Fig. 2.c, before impacting the ground as shown

in Fig. 2.d. Furthermore, subjects carried out impact type falls in multiple

directions; left, forward, right and backwards.

Additionally, ADL tasks were undertaken with test subjects, including walk-155

ing, sitting on a chair from standing position, standing up from chair, jumping

and running. The ADL and fall databases are presented in Tables 2 and 3,

detailing the activity type and the number of events obtained. Each subject

performed every ADL type activity at least once to produce a minimum of 20

events within the data base. Walking ADL activities are a significantly frequent160

activity, hence double the amount of samples were recorded to obtain 40 mon-

itored events. Furthermore, every subject produced at least one soft and hard

Table 1: Subject test group data (n=14).

Mean Standard Deviation

Age 27 8

Weight (kg) 80 20

Height (cm) 176 16
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(a) (b)

(c) (d)

Figure 2: Fall type occurrences; (a) hard impact type fall with (b) straight fall to ground and

(c) soft impact fall type with preliminary fall to subjects knee before (d) falling to ground.
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Table 2: ADL database.

ADL Type Number of ADLs

Walking 40

Sitting on Chair 20

Standing Up 20

Jumping 20

Running 20

ADL Total 120

Table 3: Fall database.

Fall Type Number of Falls

Hard Impact 80

Soft Impact 80

Left Direction 40

Forward Direction 40

Right Direction 40

Backward Direction 40

Fall Total 160

impact falls in every direction to obtain 40 recorded fall events for left, forward,

right and backward directions. Every fall direction-based occurrence produced

50% soft and hard impact fall types, producing 80 soft and 80 hard fall impact165

events. In summary, 14 test subjects obtained a database of 120 ADL and 160

fall recorded occurrences.

The obtained acceleration data from the Shimmer device was wirelessly

recorded and analysed in Matlab. The Shimmer acceleration data was then

processed and evaluated to model compressive sensing on the Shimmer plat-170

form and evaluate fall analysis on the received acceleration data features with

the proposed fall detection system demonstrated in Fig. 3.

The proposed compressive sensing accelerometer-based intelligent fall detec-

tion system records acceleration signals in 3 dimensions (3D) on the Shimmer
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Figure 3: Presented fall detection system methodology.

device. These signals are joined together to form a tri-axial acceleration sig-175

nal which is then transformed to the wavelet domain. The wavelet signal is

thresholded to maintain the largest significant coefficient values while zeroing

the other coefficients to obtain a sparse signal. The signals sparsity is improved

through applying a preknown random permutation index function to ensure

samples are randomly located throughout the vector. The sparse wavelet sig-180

nal is then projected onto a random sensing matrix before being transmitted

from the Shimmer device to the base station receiver for signal analysis. The

received signal is reconstructed through various compressive sensing algorithms,

MP, OMP, ROMP and StOMP. The reconstructed signal is then restructured

in accordance with the preknown sparsity permutation function before being185

classified with the PCA-based decision tree to determine fall occurrence, fall

direction and fall strength. The PCA-based decision tree classifier is generated

10



from analysis of fall and ADL signals evaluated in the wavelet domain.

3. Fall Signal Analysis

3.1. Threshold-Based Fall Detection190

Current standard approaches to accelerometer-based fall detection systems

utilise a wavelet-based threshold [33, 24, 26]. The discrete wavelet transform

(DWT) for a Daubechies 2 level-3 mother-wavelet is applied to the time do-

main tri-axial x, y and z-axes acceleration components to determine the wavelet

equivalent acceleration components αx, αy and αz. The wavelet-domains mod-195

ule of acceleration vectors determine the wavelet acceleration sum vector SV as

follows:

SV =
√

(αx)2 + (αy)2 + (αz)2 > τ (1)

The threshold parameter τ is applied to the wavelet domains sum vector, where

values exceeding the threshold parameter determine fall occurrence. The thresh-

old parameter is typically selected in the literature [12] by an arbitrary value200

based on evaluation of fall data, however an optimum threshold Oτ method has

been presented [14], as follows:

Oτ =
1

n

n∑
i=1

ρi (2)

The optimum threshold is obtained through evaluating the average minimum

fall acceleration values for each subject ρ within a group of n subjects, where

each subjects minimum fall acceleration value is represented as ρ1, ρ2...ρn.205

3.2. PCA-Based Smart Fall Detection Classifiers

The presented smart fall detection system evaluates the fall and ADL database

of wavelet feature coefficients feeding a binary decision tree after PCA extrac-

tion. Initial signal features are calculated using the Daubechies 2 level-3 DWT

to obtain αx, αy and αz wavelet versions of the acceleration signals, α̂x, α̂y and210

α̂z. ADL and fall samples were obtained from 2-second windows in the time do-

main, yielding an overall number of 101 three dimensional vectors (fs = 50Hz),

11



which were reorganized to vector length 303 prior to PCA calculation so that

wavelet acceleration vectors α̂ = [α̂z, α̂y, α̂z] of length 90 entered the PCA stage.

PCA is an unsupervised linear transformation method frequently utilized215

for data classification and reduced dimensionality. PCA utilizes statistical or-

thogonal functions to reduce signal dimensionality of the large observed data

variables to obtain smaller significant data feature variables [34]. Let the train-

ing data set of wavelet accleration signals α̂ω = [α̂1, α̂2, ...α̂N ], then the training

set average is defined as ρ = 1
N

∑N
i=1 α̂ωi

. The wavelet acceleration signals differ220

from the mean-based average through ∆α̂ω = α̂ωi − ρ. The set of wavelet ac-

celeration signal mean-based differences ∆α̂ω
are evaluated to obtain the PCA

covariance matrix CM = 1
N

∑N
i=1 ∆α̂ωi

∆Γ
α̂ωi

, where the orthogonal counterpart

of the wavelet acceleration signal mean-based difference is denoted as ∆Γ
α̂ω

. The

covariance matrix is further evaluated with eigendecomposition to determine225

the associated eignenvalues λk and eigenvectors uk. The eigenvalue data vector

is arranged in descending order, where M principle components are selected

λ1, λ2, ...λM . The PCA implementation utilizes M = 45 principle components

to determine the feature subspace dimensionality through obtaining a projec-

tion matrix W . Unsupervised linear transformation with PCA is determined230

with α̂PCAω = WΓα̂ω The reduced signal dimensionality output α̂PCAω of the

PCA module was classified using binary decision trees [35] trimmed from 45

predictors to 26 for detecting falls and determining their strength and direction.

The decision tree functions were thus trained using PCA coefficients α̂PCAω for

fall detection, strength and direction.235

4. Compressive Sensing

Compressive sensing allows an input signal in high-dimensional space to be

compressed to a signal of significantly smaller dimensions, such as the wavelet-

domain [25, 36]. The acceleration signal in the time-domain Γ ofN samples is de-

composed with an orthonormal Daubechies 2 wavelet basis Ψ = [ψ1|ψ2| . . . |ψN ]240

to obtain a compressive sensing suitable sparse wavelet-domain coefficient signal
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X as shown:

X = ΨΓ (3)

The presented sparse wavelet signal undergoes a sparsity function µ to improve

sparsity properties with thresholding and preknown indexing. The compressive

sensing function can be described as follows:245

Y = ΦX = ΦµΨΓ (4)

Where the input signal vector X of length N is K-sparse, Y is the observation

vector of length M and the Gaussian sensing matrix Φ is of size M ×N . Com-

pressive sensing is significantly suited forK-sparse signals, where signal vectorX

of length N is represented by significant K nonzero coefficients [37]. The input

signal X is sparse when only a low number of coefficients are nonzero. Sensing250

matrices are frequently implemented as random matrix functions with indepen-

dent distribution such as Gaussian or Bernoulli distributions [38], which have

previously been demonstrated to provide efficient signal probability recovery

[39]. Additionally, compressive sensing captures M signal measurements from

N signal samples through random linear projections [39, 25], where M << N ,255

offering advantages for significantly improved data efficiency suitable for power-

limited transmission platforms.

The Shimmer platforms tri-axial acceleration signals are merged to a single

vector of length N = 303 demonstrated in Fig. 4.a, a Daubechies 2 level-3

DWT is applied, obtaining a wavelet feature and detail signal N = 90 as shown260

in Fig. 4.b, suitable for fall analysis with the presented intelligent PCA-based

fall detection classifiers. The wavelet signals sparse properties are further im-

proved through applying the sparsity function µ. Where the wavelet signal

is thresholded to obtain a wavelet signal vector N = 90, retaining K = 45

largest nonzero value coefficients, before applying a preknown random index265

permutation function as shown in Fig. 4.c. Once the wavelet acceleration sig-

nal has been sparsed, the compression described in (4) is carried out, where

a Gaussian distribution is implemented as a sensing matrix. The compressed

sparse wavelet acceleration signal Y is then transmitted. The greedy sparse
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signal recovery algorithms MP, OMP, ROMP and StOMP previously described270

are applied to recover the estimated thresholded wavelet acceleration signal X̂.

The known index permutation function is applied and the wavelet coefficients

N = 90 are extracted as demonstrated in Fig. 4.d and applied to the PCA

classifiers described previously in Section 3.2. The presented technique exploits

the received compressed wavelet acceleration data to perform PCA-based fall275

detection classification without performing the inverse DWT.

MP is a technique frequently utilised for sparse signal reconstruction through

a greedy iterative process to compute an approximation of the original signal
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Figure 4: Fall example of (a) acceleration, (b) wavelet-domain signal, (c) thresholded with

random permutation and (d) OMP estimate.
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as demonstrated in Algorithm 1. The MP algorithm iteratively determines the

single most suitable vector element to remove from the measurement matrix Φ280

and repeats the subtraction process from the residual component r during each

iteration until the estimated original signal X̂ is determined. It is important

to note that MP will repeatedly select the same vector element to remove from

the sensing matrix in order to improve the estimated signal. MP is a relatively

low-complexity solution suited to high-sparsity signals [30]. Similarly, OMP de-285

termines an estimated signal through an iterative process shown in Algorithm

2. In OMP, the approximated signal X̂ is updated every iteration with pro-

jecting Y orthogonally onto columns of the sensing matrix Φ for the current

index set Λ. OMP never selects a previously evaluated vector element from the

sensing matrix and the residual component during any iteration is orthogonal290

to currently selected vector elements. OMP is a more complex technique in

comparison to MP, as least squares is utilised to estimate the signal during ev-

ery iteration, however it reduces iterations required for signal estimation. MP

and OMP methods need to perform a minimum iteration count determined by

the number of elements to be selected, which does not scale well for large di-295

mension signals. ROMP and StOMP algorithms shown in Algorithms 3 and 4

are multiple-element selection-based techniques derived from OMP and utilise

an updated residual component every iteration until signal estimation is met.

ROMP groups inner elements λ into sets Λ, where elements in each set contain

a similar magnitude [40]. StOMP groups inner elements λ above a threshold300

parameter τ into sets Λ. The process is then repeated on the residual vector

until the estimated signal is obtained. StOMP can generally obtain good ap-

proximations through few iterations through evaluating multiple vectors [41].

For direct comparison all reconstruction algorithms were configured to operate

for K or less iterations.305
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Algorithm 1 MP algorithm for signal recovery.

Input: Φ: Sensing matrix; Y : Observation vector; K: Sparsity of signal X.

Output: X̂: Original signal estimation.

Procedure :

1: Initialise residual r0 = Y and set iteration counter i = 1.

2: Find index λi = arg max |〈ri−1, ∅j〉| for j = 1 . . . N .

3: Calculate new approximation X̂i = X̂i−1 + 〈Φλi
, ri−1〉Φλi

and residual ri =

Y − X̂i−1 = ri − 〈Φλi , ri−1〉Φλi .

4: Increment iteration counter i = i+ 1, return to step 2 if i < K.

5: Output estimate X̂.

Algorithm 2 OMP algorithm for signal recovery.

Input: Φ: Sensing matrix; Y : Observation vector; K: Sparsity of signal X.

Output: X̂: Original signal estimation.

Procedure :

1: Initialise residual r0 = Y and index set Λ0 = {∅}. Iteration counter i = 1.

2: Find index λi = arg max |〈ri−1, ∅j〉| for j = 1 . . . N .

3: Increase index set Λi = Λi−1 ∪ {λi} and matrix column vectors Φi =

[Φi−1 Φλi
].

4: Solve least squares problem for estimate X̂ of signal X; X̂i = arg min ‖Y −

ΦiX̂i‖.

5: Calculate new residual ri = Y − ΦiX̂i.

6: Increment iteration counter i = i+ 1, return to step 2 if i < K.

7: Output estimate X̂.

5. Results

Recall φ, precision ϕ and specificity δ metrics as shown in (5) through (7)

can be utilised to evaluate fall detection, direction and strength results obtained

with the proposed system.

φ =
Tp

Tp + Fn
(5)
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Algorithm 3 ROMP algorithm for signal recovery.

Input: Φ: Sensing matrix; Y : Observation vector; K: Sparsity of signal X.

Output: X̂: Original signal estimation.

Procedure :

1: Initialise residual r0 = Y and index set Λ0 = {∅}. Iteration counter i = 1.

2: Identify set λi of K largest coordinates in observation vector ui = Φiri.

3: Regularise subsets λ0 ⊂ λi with comparable coordinates |ui| ≤ 2|uλi
| for

i, λ ∈ λ0.

4: Update index set Λi = Λi−1 ∪ λ0.

5: Calculate new approximation X̂i = arg min ‖Y − ΦiX̂i‖ and residual ri =

Y − ΦiX̂i.

6: Increment iteration counter i = i+ 1, return to step 2 if i < K.

7: Output estimate X̂.

Algorithm 4 StOMP algorithm for signal recovery.

Input: Φ: Sensing matrix; Y : Observation vector; K: Sparsity of signal X.

Output: X̂: Original signal estimation.

Procedure :

1: Initialise residual r0 = Y and index set Λ0 = {∅}. Iteration counter i = 1.

2: Obtain residual correlation vector cs with matched filter, cs = ΦTi ri−1.

3: Threshold correlation residual with τ to create index λi.

4: Update index set Λi = Λi−1 ∪ λi.

5: Calculate new approximation X̂i = arg min ‖Y − ΦiX̂i‖ and residual ri =

Y − ΦiX̂i.

6: Increment iteration counter i = i+ 1, return to step 2 if i < K.

7: Output estimate X̂.

310

ϕ =
Tp

Tp + Fp
(6)

δ =
Tn

Tn + Fp
(7)
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Recall, precision and specificity are obtained from true and false positive

and negative rates: Tp, Fp, Tn, Fn. The confusion matrix defining these rates

is presented in Table 4 for events and non-events detected by the system:

Table 4: Confusion matrix defining Tp, Fp, Tn, Fn for events and non-events detected by the

system

Predicted Event Predicted Non-event

Actual Event Tp Fp

Actual Non-event Fn Tn

The events and non-events are defined depending on the measured variable:315

• Fall detection: Falls are defined as events and ADLs as non-events.

• Fall strength: For hard falls, a hard fall is defined as an event. ADLs and

soft falls are counted among non-events. For soft falls, the procedure is

inverted, being hard falls part of the non-events, and soft ones the actual

events. The overall metrics for fall strength are presented as an average320

of both hard and soft falls.

• Fall direction: For each of the directions considered (forward, backward,

left, and right directional falls), falls in that direction are the actual events,

while falls in the remaining directions and ADLs are non-events. The

overall metrics are computed averaging all the directions.325

The system’s recall value accounts for the actual sensitivity to events, while

precision is a measurement of the predictive positive value for the events. Fi-

nally, specificity measures the robustness of the system against false positives

(i.e., identifying non-events as events). An overall accuracy measure for the

system can be obtained from the F-value f metric, calculated as the harmonic330

mean of recall and precision:

f = 2
φϕ

φ+ ϕ
. (8)
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In this article, PCA-based decision tree classifiers are generated from a

training group and evaluated against a control group in accordance with k-

fold cross-validation techniques [42] for 10-fold and 5-fold methods. The 10-fold

cross validation technique seperates the signal data base into 10 equal sized335

groups, where the PCA classifier is trained utilizing 90% of acceleration signal

data, while the remaining 10% is utilized for testing. Similarly, 5-fold cross-

validation seperates the data base into 5 equal sized groups, where 80% and

20% of data is utilized for training and testing of the PCA classifier. Further-

more, the process is repeated throughout the data base groups, where eacb340

instance of testing is validated against the remaining groups. This obtains a

robust testing validation as the data base is evaluated with different combina-

tions for testing and training samples, where no sample appears simultaneously

within training and testing groups. The obtained results for 10-fold and 5-fold

cross-validation methods were recorded, where an average for each method is345

presented. Threshold-based fall detection with the optimum threshold parame-

ter [14] and PCA classifier-based fall detection, strength and direction results for

recall, precision, specificity and F-value without compressive sensing for 10-fold

and 5-fold cross-validation methods are presented in Tables 5 and 6.

Table 5: Fall detection results with 10-fold cross validation

Fall Analysis Recall (%) Precision (%) Specificity (%) F-Value (%)

Threshold-Based Fall Detection 87 93 81 90

Classifier-Based Fall Detection 96 99 98 97

Classifier-Based Fall Strength 91 99 96 95

Classifier-Based Fall Direction 87 98 84 93

The optimum threshold method demonstrated accuracy of 87% recall, 93%350

precision, 81% specificity and 90% F-value, while the presented PCA Classi-

fier method obtained significant accuracy improvements of 9%, 6%, 17% and

7% for recall, precision, specificity and F-Value respectively, obtaining 96% re-

call, 99% precision, 98% specificity and 97% F-value for 10-fold cross-validation.
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Table 6: Fall detection results with 5-fold cross validation

Fall Analysis Recall (%) Precision (%) Specificity (%) F-Value (%)

Threshold-Based Fall Detection 76 81 71 78

Classifier-Based Fall Detection 86 90 89 88

Classifier-Based Fall Strength 82 91 90 86

Classifier-Based Fall Direction 83 90 79 86

Additionally, the presented smart PCA classifier demonstrated 91% recall, 99%355

precision and 95% F-value for fall strength accuracy and 87%, 98% and 93%

F-value for fall direction with 10-fold cross-validation. The optimum threshold

method demonstrated consistent performance decreases of approximately 10%

as testing and training data increased and decreased simultaenously in accor-

dance with 5-fold cross-validation. In contrast PCA-based classifier techniques360

demonstrated a range of performance decreases from 4% to 10% in comparison

with 10-fold cross validation obtained results. Hence, the PCA-based classifier

method is demonstrated to be more robust to reduced training data with k-fold

cross validation techniques than the threshold fall detection method. The rest

of this article will present, evaluate and describe the 10-fold cross-validation365

implementation.

Multiple compressive sensing techniques were applied to the proposed system

as demonstrated in Fig. 3. The sparse received signal with K = 45 nonzero

coefficient elements over vector length N = 90 is reconstructed with MP, OMP,

ROMP and StOMP compressive sensing techniques. The reconstructed signals370

are evaluated against signal sparsity as defined in (9), where the number of

significant nonzero coefficients K are reduced in the transmitted signal vector

length N to increase sparsity.

Sparsity(%) =

(
1− K

N

)
∗ 100 (9)

The percentage of exact coefficient recovery for MP, OMP, ROMP and StOMP

compressive sensing techniques evaluated against sparsity increase are presented375

in Fig. 5.
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Figure 5: Percentage of exact coefficient recovery as sparsity increases.

The reconstructed signal initially recovers 100% exact coefficients until spar-

sity approaches 43%, 46%, 48% and 50% sparsity for MP, ROMP, OMP and

StOMP respectively, where the percentage of exact coefficient recovery begins

to decrease. The percentage of exact coefficient recovery continues to decrease380

as sparsity increases until 0% exact coefficients recovery occurs at 54%, 59%,

64% and 65% sparsity for MP, ROMP, OMP and StOMP respectively.

Evaluating MP, OMP, ROMP and StOMP recovered signals with the pre-

sented PCA-based decision tree classifier in terms of recall, precision, specificity

and F-value for fall detection, strength and direction as sparsity increases have385

been presented in Fig. 6, 7 and 8 respectively. Where sparsity increase was

obtained from reducing the number of largest significant coefficient values K of

the transmitted sparse wavelet signal.

All sparse signal recovery algorithms were initially able to obtain the same

recall, precision and F-value accuracy for fall detection, strength and direc-390

tion as presented in Table 5. However the general response of recall, precision,

specificity and F-value results decrease as sparsity increases from 50%, until 0%

accuracy occurs at 68% sparsity. Where there would frequently be a sudden sig-

nificant decrease occurring at approximately 67% sparsity towards 0% accuracy.

The initial decrease of recall, precision, specificity and F-value accuracy for fall395

detection, strength and direction occurred at approximately the same sparsity
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Figure 6: Fall detection (a) recall, (b) precision, (c) specificity and (d) F-value responses.

percentage for each compressive sensing technique. MP demonstrated accu-

racy decrease occurs at 50%, 53%, 50% and 50% sparsity for recall, precision,

specificity and F-value parameters respectively. OMP demonstrated accuracy

decrease occurs at 55%, 64%, 56% and 55% sparsity for recall, precision, speci-400

ficity and F-value parameters respectively. ROMP demonstrated accuracy de-

crease occurs at 53%, 56%, 53% and 53% sparsity for recall, precision, specificity

and F-value parameters respectively. StOMP demonstrated accuracy decrease

occurs at 56%, 65%, 57% and 56% sparsity for recall, precision, specificity and

F-value parameters respectively. However the responses after the initial de-405

crease for each compressive sensing technique are significantly different across
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Figure 7: Fall type (a) recall, (b) precision, (c) specificity and (d) F-value responses.

fall analysis. For example, fall detection recall with MP and ROMP obtain 14%

and 29% accuracy at 67% sparsity as shown in Fig. 6.a. While in comparison

MP and ROMP obtain significantly different values of 44% and 52% accuracy

for fall strength recall and 37% and 50% accuracy for fall direction with 67%410

sparsity as demonstrated in Fig. 7.a and 8.a.

The various compressive sensing techniques performance can be ranked from

highest to lowest obtained accuracy during sparsity increase, where StOMP

demonstrated the best results, followed by OMP then ROMP and the worst per-

formance was obtained with MP. StOMP obtained the highest recall, precision,415

specificity and F-value metrics throughout, followed by OMP demonstrating lit-
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Figure 8: Fall direction (a) recall, (b) precision, (c) specificity and (d) F-value responses.

tle significant difference between response, where precision results obtained were

similar, for example as demonstrated with fall detection precision as shown in

Fig. 6.b. ROMP and MP demonstrated significantly worse results than StOMP

and OMP, where MP and ROMP obtained quick and high-accuracy loss as420

sparsity increased. Recall, specificity and F-test accuracy demonstrated a large

accuracy decrease as sparsity increased, however the classifiers precision main-

tained relatively high until sparsity reached approximately 65%, e.g. Fig. 8.b.

Additionally, the PCA-based classifier was able to obtain high-accuracy re-

sults while the equivalent exact coefficient recovery percentage could be rela-425

tively low. For example, StOMP obtained 70%, 96%, 82% and 80% accuracy
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for fall detection recall, precision, specificity and F-value responses respectively

at 65% sparsity as demonstrated in Fig. 6. While in comparison, the exact

coefficient recovery was 0% at 65% sparsity as shown in Fig. 5, indicating the

obtained signal error at 65% sparsity is within the PCA-based classifiers bound-430

aries for correct fall analysis. Furthermore, the significant drop of recall, pre-

cision, specificity and F-value at 67% sparsity could be deduced to occur when

signal error increases to outside the classifiers boundary limits for correct fall

analysis. Recall, specificity and F-test accuracy generally demonstrated a large

accuracy decrease as sparsity increased, however the classifiers precision metric435

maintained relatively high accuracy until sparsity reached approximately 65%.

MP and ROMP techniques obtained the lowest performance results in compar-

ison to OMP and StOMP methods which performed well in the presented fall

evaluation application. Potential hypothesis for the different performance re-

sults include: MP has a convergence problem, where it can potentially reselect440

a previously selected vector removed from the signal. The convergence problem

of MP has demonstrated much larger error rates in comparison to OMP [43],

where OMP removes the potential vector reselection issue through updating its

dictionary during each iteration. Furthermore OMP utilizes least squares to

estimate signal approximation during every iteration further increasing the pos-445

sibilities for improved performance. ROMP has been recorded in literature for

demonstrating poor performance in application, where ROMP implementations

are best suited to very large N column data sets [41]. Possibly indicating the

fall detection application presented does not contain data large enough over N

columns for high ROMP performance. StOMP obtained relatively high perfor-450

mance results, demonstrating a small performance increase over OMP. This may

be due to the fall application utilizing Gaussian sensing matrices and StOMP

being limited to theory on Gaussian matrices, where theoretical performance is

guaranteed when applied to general Gaussian matrices [41]. Furthermore, the

proposed system offers significant space savings defined with the compression455

ratio ω expressed in (10), evaluating the number of original data samples Norig

and the number of data samples in the compressive sensing sparse signal Ncomp.
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ω(%) =

(
Norig −Ncomp

Norig

)
∗ 100 (10)

The original Shimmer device acceleration transmitted signal vector of length

Norig = 303, the compressed signal obtained a sparse signal vector of length460

Ncomp = 90 with 45 nonzero elements. The compressed signal vector Ncomp =

90 demonstrated a significant compression ratio of 70.3%, while the compres-

sion ratio in context of significant nonzero coefficients Ncomp = 45 obtained a

significant compression ratio of 85.1% in comparison to the original acceleration

signal.465

The presented PCA-based decision tree classifier method significantly out-

performed the threshold-based fall detection method frequently utilised within

literature [33, 24, 26] for accelerometer-based fall detection systems. The PCA-

based classifier obtained high-accuracy results with recall, specificity, precision

and F-value for fall detection, strength and direction, where the classifier demon-470

strated significantly higher precision results. The sparsity of the proposed sys-

tems transmitted signal was increased through reducing the number of signif-

icant coefficients retained. StOMP overall performed better during evaluation

than MP, OMP and ROMP, where StOMP and OMP obtained relatively similar

results with fall detection, strength and direction classifiers. The classifiers ac-475

curacy failed as the transmitted signal vector reached 68% sparsity with all com-

pressive sensing techniques. Furthermore, the PCA-based decision tree classifier

offers significant data reduction with a compression ratio over 70% in compar-

ison to standard acceleration signal transmission within the Shimmer device.

The obtained transmission data reduction has a direct effect on significantly480

improving transmission efficiency with the Shimmer device.

6. Conclusions

This article presents a compressive sensing acceleration-based intelligent fall

detection and analysis system with a Shimmer embedded computing device

modelled with Matlab. The proposed system utilises fall and ADL acceleration485

26



signals within the wavelet-domain to obtain PCA-based binary decision tree fall

classifiers for fall detection, strength-type and direction. Test subjects generated

fall and ADL acceleration signals with the Shimmer device. The captured tri-

axial acceleration signals were converted to the wavelet-domain and made sparse

through selecting the most significant coefficients for wireless transmission to a490

base station. The received sparse signal is then recovered through greedy com-

pressive sensing techniques: MP, OMP, ROMP and StOMP. The reconstructed

signal is then evaluated with the PCA-based decision tree classifier to deter-

mine fall detection, strength and direction. The presented system obtained

highly-accurate fall detection, strength and direction results for recall, preci-495

sion, specificity and F-value accuracy. Acceleration-based fall detection systems

have reported low-accuracy response with threshold-based detection methods

[12]. The optimum threshold method presented demonstrated 87%, 93%, 81%

and 90% for fall detection recall, precision, specificity and F-value measures.

The presented PCA-based decision tree technique obtained 96%, 99%, 98% and500

95% for fall detection recall, precision, specificity and F-value measures respec-

tively, demonstrating significant improvements in comparison with the optimum

threshold approach. Additionally, threshold approaches are significantly limited

as they are only capable of detecting fall occurrence. While in comparison the

presented PCA-based approach can determine fall occurrence in addition to im-505

portant fall information including whether the fall was a hard or soft impact, in

addition to the direction the individual fell. Acceleration data transmission with

the Shimmer device accounts for over 80% of total current consumption during

standard use, indicating the importance of efficient data transmission on the

limited power Shimmer platform. Various compressive sensing techniques were510

utilised to significantly reduce acceleration information required for transmis-

sion with the Shimmer device. StOMP obtained the best signal performance as

signal sparsity increased, where 0% exact coefficient recovery occurred at 54%,

59%, 63% and 65% for MP, OMP, ROMP and StOMP techniques. MP, OMP,

ROMP and StOMP were initially able to obtain the same recall, precision and515

F-value accuracy for fall detection, strength and direction, however as sparsity
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increased the accuracy decreased. Where StOMP obtained the best results for

fall detection, strength and direction with OMP obtaining slightly lower ac-

curacy results, while MP and ROMP demonstrated significantly low-accuracy

results in comparison. Furthermore, the presented compressive sensing fall de-520

tection system obtains significant data reduction of over 70%, demonstrating

improved transmission efficiency while maintaining the systems high accuracy

results.
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