3,731 research outputs found

    Double-Edge Factor Graphs: Definition, Properties, and Examples

    Full text link
    Some of the most interesting quantities associated with a factor graph are its marginals and its partition sum. For factor graphs \emph{without cycles} and moderate message update complexities, the sum-product algorithm (SPA) can be used to efficiently compute these quantities exactly. Moreover, for various classes of factor graphs \emph{with cycles}, the SPA has been successfully applied to efficiently compute good approximations to these quantities. Note that in the case of factor graphs with cycles, the local functions are usually non-negative real-valued functions. In this paper we introduce a class of factor graphs, called double-edge factor graphs (DE-FGs), which allow local functions to be complex-valued and only require them, in some suitable sense, to be positive semi-definite. We discuss various properties of the SPA when running it on DE-FGs and we show promising numerical results for various example DE-FGs, some of which have connections to quantum information processing.Comment: Submitte

    Factor Graphs for Quantum Probabilities

    Full text link
    A factor-graph representation of quantum-mechanical probabilities (involving any number of measurements) is proposed. Unlike standard statistical models, the proposed representation uses auxiliary variables (state variables) that are not random variables. All joint probability distributions are marginals of some complex-valued function qq, and it is demonstrated how the basic concepts of quantum mechanics relate to factorizations and marginals of qq.Comment: To appear in IEEE Transactions on Information Theory, 201

    Belief Propagation on replica symmetric random factor graph models

    Get PDF
    According to physics predictions, the free energy of random factor graph models that satisfy a certain "static replica symmetry" condition can be calculated via the Belief Propagation message passing scheme [Krzakala et al., PNAS 2007]. Here we prove this conjecture for two general classes of random factor graph models, namely Poisson random factor graphs and random regular factor graphs. Specifically, we show that the messages constructed just as in the case of acyclic factor graphs asymptotically satisfy the Belief Propagation equations and that the free energy density is given by the Bethe free energy formula
    • …
    corecore