984,485 research outputs found
Identification of dynamic economic models from reduced form VECM structures: an application of covariance restrictions
This analysis is a straightforward implementation of both long-run and short-run identifying or overidentifying restrictions on a vector error correction model in the "structural VAR" framework. The framework utilizes covariance restrictions, long-run multiplier restrictions, error correction coefficient restrictions, and restrictions on slope coefficients of the stimultaneous interactions in the "economic model." The framework is general enough to incorporate restrictions on impact multipliers. Two examples are provided. The first example is a dynamic M2 demand specification with a comparison to previous results that are constructed using restrictions on distributed lag coefficients to achieve identification. The second example illustrates the identification of equilibrium short-term and long-term interest responses of money demand using error-correction coefficient restrictions when the individual coefficients are underidentified in the cointegrating vectors in the presence of stationary interest rate spreads.Econometric models ; Demand for money
Factors affecting the identification of individual mountain bongo antelope
The recognition of individuals forms the basis of many endangered species monitoring protocols. This process typically relies on manual recognition techniques. This study aimed to calculate a measure of the error rates inherent within the manual technique and also sought to identify visual traits that aid identification, using the critically endangered mountain bongo, Tragelaphus eurycerus isaaci, as a model system. Identification accuracy was assessed with a matching task that required same/different decisions to side-by-side pairings of individual bongos. Error rates were lowest when only the flanks of bongos were shown, suggesting that the inclusion of other visual traits confounded accuracy. Accuracy was also higher for photographs of captive animals than camera-trap images, and in observers experienced in working with mountain bongos, than those unfamiliar with the sub-species. These results suggest that the removal of non-essential morphological traits from photographs of bongos, the use of high-quality images, and relevant expertise all help increase identification accuracy. Finally, given the rise in automated identification and the use of citizen science, something our results would suggest is applicable within the context of the mountain bongo, this study provides a framework for assessing their accuracy in individual as well as species identification
Efficient delay-tolerant particle filtering
This paper proposes a novel framework for delay-tolerant particle filtering
that is computationally efficient and has limited memory requirements. Within
this framework the informativeness of a delayed (out-of-sequence) measurement
(OOSM) is estimated using a lightweight procedure and uninformative
measurements are immediately discarded. The framework requires the
identification of a threshold that separates informative from uninformative;
this threshold selection task is formulated as a constrained optimization
problem, where the goal is to minimize tracking error whilst controlling the
computational requirements. We develop an algorithm that provides an
approximate solution for the optimization problem. Simulation experiments
provide an example where the proposed framework processes less than 40% of all
OOSMs with only a small reduction in tracking accuracy
Dynamic Estimation of Rigid Motion from Perspective Views via Recursive Identification of Exterior Differential Systems with Parameters on a Topological Manifold
We formulate the problem of estimating the motion of a rigid object viewed under perspective projection as the identification of a dynamic model in Exterior Differential form with parameters on a topological manifold.
We first describe a general method for recursive identification of nonlinear implicit systems using prediction error criteria. The parameters are allowed to move slowly on some topological (not necessarily smooth) manifold. The basic recursion is solved in two different ways: one is based on a simple extension of the traditional Kalman Filter to nonlinear and implicit measurement constraints, the other may be regarded as a generalized "Gauss-Newton" iteration, akin to traditional Recursive Prediction Error Method techniques in linear identification. A derivation of the "Implicit Extended Kalman Filter" (IEKF) is reported in the appendix.
The ID framework is then applied to solving the visual motion problem: it indeed is possible to characterize it in terms of identification of an Exterior Differential System with parameters living on a C0 topological manifold, called the "essential manifold". We consider two alternative estimation paradigms. The first is in the local coordinates of the essential manifold: we estimate the state of a nonlinear implicit model on a linear space. The second is obtained by a linear update on the (linear) embedding space followed by a projection onto the essential manifold. These schemes proved successful in performing the motion estimation task, as we show in experiments on real and noisy synthetic image sequences
Testing the order of a model
This paper deals with order identification for nested models in the i.i.d.
framework. We study the asymptotic efficiency of two generalized likelihood
ratio tests of the order. They are based on two estimators which are proved to
be strongly consistent. A version of Stein's lemma yields an optimal
underestimation error exponent. The lemma also implies that the overestimation
error exponent is necessarily trivial. Our tests admit nontrivial
underestimation error exponents. The optimal underestimation error exponent is
achieved in some situations. The overestimation error can decay exponentially
with respect to a positive power of the number of observations. These results
are proved under mild assumptions by relating the underestimation (resp.
overestimation) error to large (resp. moderate) deviations of the
log-likelihood process. In particular, it is not necessary that the classical
Cram\'{e}r condition be satisfied; namely, the -densities are not
required to admit every exponential moment. Three benchmark examples with
specific difficulties (location mixture of normal distributions, abrupt changes
and various regressions) are detailed so as to illustrate the generality of our
results.Comment: Published at http://dx.doi.org/10.1214/009053606000000344 in the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Extending the Latent Multinomial Model with Complex Error Processes and Dynamic Markov Bases
The latent multinomial model (LMM) model of Link et al. (2010) provided a
general framework for modelling mark-recapture data with potential errors in
identification. Key to this approach was a Markov chain Monte Carlo (MCMC)
scheme for sampling possible configurations of the counts true capture
histories that could have generated the observed data. This MCMC algorithm used
vectors from a basis for the kernel of the linear map between the true and
observed counts to move between the possible configurations of the true data.
Schofield and Bonner (2015) showed that a strict basis was sufficient for some
models of the errors, including the model presented by Link et al. (2010), but
a larger set called a Markov basis may be required for more complex models. We
address two further challenges with this approach: 1) that models with more
complex error mechanisms do not fit easily within the LMM and 2) that the
Markov basis can be difficult or impossible to compute for even moderate sized
studies. We address these issues by extending the LMM to separately model the
capture/demographic process and the error process and by developing a new MCMC
sampling scheme using dynamic Markov bases. Our work is motivated by a study of
Queen snakes (Regina septemvittata) in Kentucky, USA, and we use simulation to
compare the use of PIT tags, with perfect identification, and brands, which are
prone to error, when estimating survival rates
Recommended from our members
Modeling and Verification of Error Propagation in Integrated Additive/Subtractive Multi-Directional Direct Manufacturing
Integrated additive-subtractive manufacturing, when applied in the framework of SolidFreeform-Fabrication (SFF) allows the fabrication of functional parts on single platform, directly from its computer model. Reduction in process complexity and total processing steps is
ensured by multi-directional material deposition and machining. However, due to shift in the
datum location in reorientation steps and sequential addition of material in the form of layers,
the CAD process intent is not exactly replicated. This leads to inclusion of dimensional errors.
Machining in order to eliminate the errors as frequent as layer deposition is highly expensive
and can be avoided by estimation of errors and varying process parameters, and/or performing
machining after a set of layers are deposited. This paper proposes a state space model for modeling the error propagation due to linear as well as angular variation in the datum. The model
is based on identification of possible sources of error, mechanism of error inclusion and influence
of process parameters. An experiment performed to determine parameters of error modeling
has been reported.Mechanical Engineerin
- …
