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Identification of Dynamic Economic Models from Reduced Form VECM Structures:
An Application of Covariance Restrictions

Robert H. Rasche∗

Sims (1980) publication of Macroeconomics and Reality provoked a revolution in

applied macroeconomic modeling in particular and econometric time series analysis in

general.  Until that point in time, large-scale macroeconometric model construction for

forecasting and policy analysis was a prominent academic activity in the United States

and was exported widely to the rest of the world.  Since that time, with a few notable

exceptions, the type of macroeconometrics practiced in the 60s and 70s has disappeared

as an academic activity in the US. It now survives in North America almost exclusively

in private for-profit forecasting firms and in the research staffs of government agencies

such as the Congressional Budget Office and the Board of Governors of the Federal

Reserve System.1  The VAR analysis as proposed by Sims, and variants developed since,

have become predominant in the applied macroeconometrics literature.

Sims’ (1980) principal criticism of large-scale macroeconometric modeling as it

was practiced in the US in the late 60s and 70s was that “the style in which

‘identification’ is achieved for these models – is inappropriate, to the point at which

claims  for identification in these models cannot be taken seriously.”2  He argued that the

                                                          
∗  Senior Vice President and Director of Research, Federal Reserve Bank of St. Louis.  The views expressed
here do not necessarily reflect official positions of the Federal Reserve System.
1 In the United States, two remaining academic practitioners of the traditional type macroeconometric
modeling trade are Ray Fair and John Taylor (1993) though their models are strongly influenced by the
rational expectations hypothesis.  Fair has made his forecasts and model available over the internet
<http://fairmodel.econ.yale.edu>.  Another ongoing macroeconometric modeling project with an academic
home is the Michigan Model of the US economy <http://rsqe.econ.lsa.umich.edu/forecast/table.html>,
though this venture has commercial aspects.  Recently the staff  of the Board  of Governors  of the Federal
Reserve System has developed a new vintage of macroeconometric models that are used for internal
analyses (Levin, Rogers and Tyron, 1997; Braydon, et. al., 1997)  The structure  of these  models  appear to
have more in common with the VAR tradition than with the earlier large-scale macroeconometric modeling
practice represented  by the MPS model.
2 Sims (1980), p 1.
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equation-by-equation approach to identification relying on exclusion restrictions on

lagged values of endogenous variables was “incredible”.

Since the publication of Sims’ 1980 article, the literature on short-run demand

for money functions has largely ignored the identification problem.  (e.g. Rasche (1987),

Hetzel (1989), Small and Porter (1989), Moore, Porter and Small (1990), Rasche (1990),

Hallman, Porter and Small, (1991), Mehra (1991)).  One analysis that does implicitly

mention the identification problem is Mehra (1993).  Mehra states:

“The IV regression of (3) included only contemporaneous values of real
income and opportunity cost and two lagged values of real M2 (n1 = n2 = 0
and n3 = 2).  The instruments are a constant, four lagged values of
∆rGNPt and ∆(R-RM2)t, and a lagged value of rM2t, rGNPt, and (R-
RM2)t.”

3

In other words, Mehra applies the identifying restrictions that Sims had decried 13 years

earlier as “incredible”.

Sims proposed an alternative form for macroeconometric models, the vector

autoregression (VAR).  He certainly was well aware of the importance of the

identification problem for inference from VAR structures, though his original description

of his identification scheme appears to have left subsequent practitioners with less than a

full understanding of the technique they were using:

“The best descriptive device appears to be analysis of the system’s
response to typical random shocks.  Except for scaling, this is equivalent
to tracing out the system’s moving average representation by matrix
polynomial division.  As well be seen below, the resulting system
responses are fairly smooth, in contrast to the autoregressive lag
structures, and tend to be subject to reasonable economic interpretation.

The ‘typical shocks’ whose effects we are about to discuss are
positive residuals on one standard deviation unit in each equation of the
system.  The residual in the money equation, for example, is sometimes
referred to as the ‘money innovation’ since it is that component of money

                                                          
3 Mehra (1993), footnote 4, p. 457. RM2 is the log of real M2 balances; rGNP is the log of real GNP; RM2
is the log of the difference between the commerical paper rate and the “own” rate on M2.
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which is ‘new’ in the sense of not being predicted from past values of
variables in the system.  The residuals are correlated across equations.  In
order to be able to see the distinct patterns of movement the system may
display it is therefore useful to transform them to orthogonal form.  There
is no unique way to do this.  What I have done is to triangularize the
system with variables ordered as M, Y, U, W, P, PM.  Thus the residuals
whose effects are being tracked are the residuals from a system in which
contemporaneous values of other variables enter the right-hand-sides of
the regression with a triangular array of coefficients.”4

Early in the development of the VAR literature there appears to be a widely held

misconception that the new form of modeling made the identification problem obsolete.

This misconception appears more recently in the vector error correction model (VECM)

literature.

The current analysis focuses on the fundamental problem of identification that

was central to Sims’ criticism of the established practice and is shared by all of the

modeling techniques subsequently developed.  In section 1 the identifying restrictions

implicit in standard VAR models are reviewed.  In section 2 the identification of

“common trends” or permanent shocks from reduced vector error correction models is

presented in the standard structural VAR identification framework.  In section 3 the

structural VAR identification for permanent shocks is augmented with additional

restrictions on error correction terms to identify transitory shocks (short-run

specifications) from reduced form vector error correction models.  This approach is

illustrated with a comparison to the Mehra (1993) analysis of the demand for real M2.

1. Identification in VAR Models

The above quotation from Sims is the origin of the subsequent practice of

“reordering and orthogonalizing” of VAR models.5 The process described there can be

                                                          
4 Sims (1980), p.21
5 In retrospect, there are two unfortunate aspects to this statement 1) the characterization of this procedure
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described algebraically as follows:  Let Xt be a p x 1 vector of data series and define the

reduced form VAR data generating process for Xt as:

(1) ttp

k

i
itit XLIXX ε=Γ−=Γ− ∑

=
− )]([

1

,

 where Γ(L) is a polynomial matrix in the lag operator L.  Let W be a nonsingular pxp

permutation matrix  with the property that ′ =W W I p .  Then the “reordered” VAR can

be written as:

(2) *])([)]([ tttptp WWXWLWIXLIW εε ==′Γ−=Γ− .

 “Orthogonalize” the “reordered” VAR structure by decomposing the covariance matrix

of the ε εt ,
*

*Σ as Σε* = ′TDT , where T is a pxp lower triangular matrix normalized to 1.0

on the principal diagonal and D is a diagonal matrix.6  Then premultiply the “reordered”

VAR structure by 1−T  to get the identified “economic model”7:

(3) tttp uTWXWLWIT ==′Γ− −− *11 ])([ ε .

Note that the covariance matrix of the identified ut “economic shocks” is

DTTTDTTT =′′=′Σ −−−− ))(()( 111
*

1
ε , so by construction these residuals are uncorrelated

in the sample. This identification scheme in equation (3) is not new to the econometrics

literature.  It was proposed by Wold (1954) as a “causal chain” structure and was

criticized intensely in the literature of the 1950s and early 60s (e.g. Basmann, 1963).

This identification scheme was strongly defended as appropriate for economic structures

in a series of articles by Wold (1954, 1960) and Strotz and Wold (1960). Nevertheless,

                                                                                                                                                                            
as a “descriptive device” and 2) that lack of any citations in the final sentence of the quotation to the
established econometrics literature.
6 Alternatively, assume D=Ip and place no restrictions on the principal diagonal of T.
7 1−T  is lower triangular since it is the inverse of a lower triangular matrix. The T matrix defines the
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the approach was never accepted as a “credible” representation of an economic structure

by mainstream econometricians in the 60s and 70s.8

Much is known about the economic model described by (3).  First, the

restrictions that the covariance matrix of the tu is diagonal and that the 1−T  matrix is

triangular exactly identify the causal chain model.  Second, the matrix WT 1−  that

defines the economic model is not invariant to the choice of W.  Third, the 1−T  matrix of

the “economic model” in (3) can be estimated consistently by single equation OLS, and

this OLS estimator is the full information maximum likelihood (FIML) estimator of this

system (e.g. Theil, 1971, pp. 460-3, 525).  The Cholesky decomposition of the

“reordered” covariance matrix is just an application of  “indirect least squares” to the

unrestricted reduced form estimates of an exactly identified model (e.g. Goldberger,

1964, pp. 526-28).

Identification in Structural VARs

The first modifications to the original causal chain VARs appeared in separate

articles by Sims (1986) and Bernanke (1986).  Let the VAR be defined as in (2) above

and assume that the relationship between the shocks to the “economic model” and the

reduced form shocks in the VAR are of the form:

(4) tt ABu ε= , or tt BuA 1−=ε .

The traditional VAR imposed the identifying restrictions that Σu is diagonal, A = W and

B is lower triangular.  The “structural VAR” models that Sims proposed maintain the

assumptions that Σu  is diagonal, assume that B = Ip, and impose sufficient zero

                                                                                                                                                                            
“impact multipliers” of the “economic shocks”.
8 For example: “Identification based on restrictions on the disturbance distribution is attractive only when
there exists sufficient knowledge of the process which generates the disturbances.  This is usually not the
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(exclusion restrictions) on the A matrix to exactly identify the “economic model”. His

various assumed restrictions do not satisfy a complete lower triangular pattern.9  Note

that this imposes identifying (or overidentifying) restrictions on the slope coefficients of

the “economic model”, consistent with the identification in traditional simultaneous

equation models. This can be seen by substituting for εt in (1) from (4) to get:

(5) ttp uAXLI 1)]([ −=Γ− .

Multiply (5) by A to get the “economic model”:

(6) ttp uXLIA =Γ− )]([ .

Hence the only difference between the identification in this type “structural VARs” and

the practice in large-scale dynamic macromodels is that covariance restrictions are

utilized for identification rather than restrictions on the lag structures of the model.

2. Identification of Permanent Shocks in Vector Error Correction Models

The King, Plosser, Stock and Watson (1991) “common trends” model identifies

the permanent shocks in a VECM by assuming a block triangular structure of an

economic model specified in terms of transformed data that are generated by (p-r)

permanent and (r) transitory economic shocks, with the permanent shocks ordered in the

first block in this structure.  The permanent shocks are assumed to be uncorrelated with

each other, and uncorrelated with all of the transitory shocks.  Each of the permanent

shocks is assumed to have a particular long-run impact on a specific element of the

                                                                                                                                                                            
case.” Theil (1971), p. 494.
9 Giannini (1992) defines this as the “K” class of models.  Since there are only p(p+1)/2 independent
elements in Σε , and there are p parameters to be estimated in Σu , there are at most p(p-1)/2 free

parameters that can be identified in A.  Conditions for identification of the parameters of such models are
discussed in Giannini (1992), Chapter 2.
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VECM vector, in effect imposing overidentifying restrictions on the steady-state

multipliers for each of the permanent shocks.10

Define the reduced form VECM as:

(7) tttp LXXLI εβα +′=∆Γ− )]([

and let the MA representation of the (p x 1) vector Xt be:

(8) ttt LCLCLCX εε )]()1()1([)( *−+==∆ ,

with Σε as the covariance matrix of the reduced form error vector tε .  By construction

pIC =)0( . Rank C(1) =p-r and 0)1( =αC .

Let W1 be a (p-r) x p permutation matrix, such that P
tt BuCW =ε)1(1  defines the

(nonorthogonalized) permanent shocks. Choose W1 such that rank [ ])1(1CW = p-r.  The

independent rows of C(1) selected by W1 determine the elements of tX  to which the

long-run effects of the elements of P
tu are transmitted. In terms of Sims “structural VAR”

approach tt ABu ε= , )1(1CWA = . Assume that B is lower triangular. Transform the

reduced form VECM as:

(9) tttp CWLXCWXlICW εβα )1()1()]()[1( 111 +′=∆Γ−

so that

(10) P
ttp BuXLICW =∆Γ− )]()[1(1 .

Note that the(p-r) equations in (10) are first differenced specifications so that the

P
tu shocks transmit permanent effects to the elements of tX .  Under the assumed

structure, B can be estimated without identifying the transitory shocks.

                                                          
10 Rasche (1981, pp. 267-9) argues that the iterative estimation and simulation process used by large-scale
macroeconometric modelers effectively placed restrictions on the long-run multipliers of those models.
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Decompose the covariance matrix of the errors in (9):

′=′Σ BDBCWCW e )]1([)]1([ 11

with the restrictions that  B is lower triangular with 1.0s on the principal diagonal and D

is a (p-r)x(p-r) diagonal matrix. These restrictions are sufficient to exactly identify the

orthogonalized permanent shocks, the B and D matricies as a Wold causal chain

structure.

 Premultiply the transformed VECM model (10) by the 1−B matrix to obtain the

implied identified “economic model” of the permanent shocks as:

(11) P
ttp uXLICWB =∆Γ−− )]()[1(1

1 .

The B  matrix defines the steady-state multipliers of the permanent shocks on the

p-r elements of tX  selected by 1W .  Premultiply (8) by 1
1WB− :

t
P
ttt LCWBLuLCWBLCWBXWB εε )()1()]()1()1([ *

1
1*

1
1

1
1

1
1 −−−− −+=−+=∆ , so

t
P
tt LCWLBuXW ε)()1( *

11 −+=∆ , and

∑∑
==

−−+=
t

j
j

t

j

P
jt jtCWLuBXW

0

*
1

0
1 )()1( ε

If B is diagonal then each element of P
tu  has a long-run impact on a unique element of

tX ; i.e. the “common trends” model implies overidentifying restrictions.  Such

overidentifying restrictions can be tested.11

3. Identification of transitory shocks by Exclusion Restrictions on
Cointegrating Vectors

                                                                                                                                                                            
The “common trends” structure applies such restrictions directly.
11e.g. Hoffman and Rasche (1996)



10

The “common trends” hypothesis places no restrictions on the remaining r

equations in the model, so the transitory shocks remain underidentified.  Boswijk (1995)

suggests that individual equations with transitory shocks can be identified from a reduced

form VECM by imposing exclusion restrictions on the matrix of error correction

coefficients in the “economic model”.12  By appropriate transformation of the reduced

form VECM this approach also can be implemented as an extension of the “common

trends” model.  Consider an alternative transformation of the residuals of the reduced

form VECM of the form tt ABu ε= :

where 







=

rIB

T
B

21

11 0
 and 








′′








= −

−

ααα 1
2

1

22 )(

)1(

0

0

W

CW

T

I
A rp .

Assume that 11T  and 22T are lower triangular matricies normalized to unity on the

principal diagonal. These restrictions and the restriction that Du =Σ  is a diagonal matrix

exactly identify the “economic model”.  Premultiply the reduced form VECM by









′′








−

−

ααα 1
2

1

22 )(

)1(

0

0

W

CW

T

I rp  and substitute tt ABu ε= :

(12)

















+

′







′′







=∆Γ−







′′








−−

−
−

−

T
t

P
t

r

t
rp

tp
rp

u

u

IB

T

X
W

CW

T

I
XLI

W

CW

T

I

21

11

11
2

1

22
1

2

1

22

0

)(

)1(

0

0
)]([

)(

)1(

0

0
βα

αααααα

                                                          
12 An alternative approach to imposing both short-run and long-run restrictions is used by Gali (1992).
Gali’s identification follows the structural VAR approach in that he estimates an unrestricted reduced form
VAR and assumes that the ‘economic shocks’ are uncorrelated.  In addition, he simultaneously imposes
restrictions on long-run multipliers, impact multipliers and the contemporaneous interactions of the
elements of the data vector.  His restrictions define one permanent and three transitory shocks in his four
variable system.  These restrictions do not appear consistent with the conclusion of his unit root analysis
that argues for two cointegrating vectors among four nonstationary variables.

Mellander, Vredin and Warne (1992), Hoffman and Rasche (1996) and Crowder, Hoffman and
Rasche (1999) identify transitory shocks by imposing restrictions on the impact multiplier matrix.
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Note that: 1
2

1
2

1 0

)(

)1(
−− ′








=′








′′ tt X

W
X

W

CW
ββα

ααα
.  With this transformation of the model, the

permutation matrix W2 “reorders” the cointegrating vectors 1−′ tXβ in the last r equations

of the transformed model.

The “economic model” identified by the restrictions on this transformed reduced

form model is:

(13) [ ] 







=′−∆Γ−








T
t

P
t

ttp
u

u
LXXLI

H

H
βα)}({

2

1

where 







′′








−

=







−−

−

ααα 1
2

1

22
1

1121

1
11

2

1

)(

)1(0

W

CW

TTB

T

H

H
.

In terms of the transformed data vector, tX
W

CW
∆








′′ ααα )(

)1(

2

1 , the model has a Wold causal

chain structure, so the FIML estimator of the model is just OLS applied to each of the

equations. Only the first cointegrating vector selected by W2 appears in the (p-r+1)th

equation of the “economic model”.  Additional equations can be restricted to contain only

a single cointegrating vector by applying the overidentifying restrictions that a submatrix

of T22  is a diagonal matrix.

Note that the final r equations in (11) are normalized on individual cointegrating

vectors. Conventional interpretations of such error correction equations normalize on an

element of the appropriate row of the matrix of contemporaneous (simultaneous)

interactions of the elements of ∆Xt.  Define 22T  as a lower triangular matrix without

normalization of the elements on the principal diagonal. The economic model is then

underidentified by r restrictions.  The matrix of the contemporaneous interactions of the
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elements of ∆Xt  in the equations of the “economic model” with the transitory shocks is:









′′

−= −
−

ααα 1
2

1
22

1
11212 )(

)1(
][

W

CW
TTBH .   Let 

1

1
2

1

)(

)1(
−

− 







′′

=
αααW

CW
V .  Then

[ ]22
1

11212 TTBVH −−=  defines r(r-1)/2 linear restrictions on the elements of 2H .  The

transitory shocks and the dynamic structure of the last r equations in the “economic

model” can be exactly identified by imposing r additional linear restrictions

(normalizations) of the form:

02 ][ rHvecR =∗ .

Again, multiple equations can be constrained to contain a single cointegrating vector by

applying the overidentifying restrictions that a submatrix of T22  is a diagonal matrix.

Alternately additional restrictions on contemporaneous interactions and/or impact

multipliers could be specified.

Example: Demand for Real M2 Balances

Mehra (1993) estimates a single equation error correction model on quarterly data

for the log of real M2 (rM2t), the log of real GNP (rGNPt), and the log of the spread

between the commercial paper rate (Rt) and an estimated “own” interest rate on M2

(RM2t).  He uses both OLS and an IV estimator with lags of the regressors and the

dependent variable as instruments.  Mehra interprets that equation as a dynamic demand

function for real M2. Prior to the estimation he concluded that real M2 and real GNP are

nonstationary [I(1)], but that the interest rate spread is stationary [I(0)].  His equilibrium

demand for real M2 (equation 1) can be written as:

(14) ttttt uRMRrGNPrM +−−=−− )2(2 321 βββ .
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With ut a stationary disturbance, the left hand side of (12) must be stationary [I(0)].

Hence, he implicitly specifies a cointegrating vector: ( )10 2. −β between rM2t and Yt.

From the Granger Representation Theorem, (Johansen, (1991)) there exists a

reduced form VECM that describes the data generating process for Mehra’s specification.

The question is how a short-run demand function for real balances, comparable to

Mehra’s specification, can be identified from the reduced form VECM.  Let

),2,2( ttttt rGNPRMRrMX −=′ .  The reduced form VECM is:

(15) tttp LXXLI εβα =′−∆Γ− )]([

where 






 −
=′

00.10

00.1 2β
β .  Here r = rank(β) = 2 so there is (p-r) = 1 permanent shock

implied by his specification.  Let the selection vector for the permanent shock be W1 = (0,

0, 1.0) so that the single common trend is identified as having a unitary long-run

multiplier on real output and specify the selection matrix for the cointegrating vectors as








=
00.1

0.10
2W .   Let 








=

22

21
21 b

b
B  and 








=

2221

11
22

0

tt

t
T .  Since p-r = 1, 0.111 =T .

Then the “economic model” is:13









=′
















−∆Γ−
















− T

t

P
t

ttp
u

u
LX

tt

tXLI
H

CW

TB
β

2122

11
2

1

2221

0

00

)]([
)1(00.1

Only the second cointegrating vector appears in second equation in the identified

“economic model”, and both cointegrating vectors appear in the third equation of the

                                                          
13 The identifying restrictions that define the permanent shock here are identical to those used in Gali
(1992) to identify his supply shock.  Casual examination of this structure suggests that the coefficients on
the contemporaneous values of ∆Xt are sensitive to the choice of W1.  In this model this is not true.  Since

the rank[C(1)] = 1, the rows of C(1) differ  only by a scale factor.
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identified “economic model”. Both equations require a normalizing restriction. When the

second equation is normalized on )2( tt RMR −  it specifies the data generating process

for the stationary interest rate spread.  The third equation has the same form as Mehra’s

equation (2).  When this equation is normalized on trM 2  it specifies the short-run money

demand function. For this model, let  
















=








′′

−

−

333231

232221

1312111

1
2

1

)(

)1(

vvv

vvv

vvv

W

CW

ααα
. Then









−
−

=







=

222122

1121

333231

232221
2

0

ttb

tb
V

hhh

hhh
VH , so 0.0332323221321 =++ vhvhvh .

To normalize the second equation on the contemporaneous change in the opportunity cost

variable requires the linear restriction 0.122 =h .  To normalize the third equation on the

contemporaneous change in the log of real balances requires the linear restriction

0.131 =h .  These two normalizations, in addition to the restriction stated previously,

exactly identify the dynamic money demand function.

Estimation

The model can be estimated in several ways. OLS can be applied to the

transformed data to obtain the FIML estimates of the parameters of the specification

normalized on the cointegrating vectors.  The estimated coefficients of the third equation

can be renormalized for the contemporaneous change in  real balances.  Alternatively, the

same estimates can be obtained directly using either FIML estimation, or as an

application of instrumental variables.14   To estimate the model by IV, first note that P
tu is

assumed to be orthogonal to T
tu and appears prior to T

tu in a Wold causal chain structure.

                                                          
14 For an interpretation of FIML as an instrumental variable estimator in the presence of covariance
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Thus P
tu can be estimated prior to T

tu and the elements of this vector are valid instruments

for both the equations with the transitory shocks.  The regression specification for the

second equation (the first transitory shock) in the model can be determined by solving

0.13323231321 =++ vhvvh  for 23h . Substitute this expression into the second equation to

get:

(16) T
ttttttt uLXtXLX

v

v
XhX

v

v
X 122223

33

13
1213

33

23
2 )()()( +′+∆Π=∆−∆+∆−∆ β

Estimation of this equation requires only a single instrument.

The residual vector from the estimation of T
tu1  is assumed orthogonal to T

tu2  and

hence is a valid instrument for the estimation of the third equation in the system:

(17) [ ] T
tttrgnptopp uLXXLX 213cos )(,,0.1 +′+∆Π=∆−− βφββ

where topp cosβ  and rgnpβ are the short-run elasticities of the demand for real M2 with

respect to the opportunity cost and real GNP respectively.

[ ] )(,,0.1)( cos3 LL rgnptopp Γ−−=Π ββ  and [ ]αββφ rgnptopp −−= ,,0.1 cos

Comparison with Results from Mehra’s Identification Assumptions

Mehra is not specific about the sources of the data that he used.15  Since his

sample period ends with 91:2, it is assumed here that the vintage of the data is late 1991,

and series for real GNP and the GNP deflator vintage November 1991 from the Federal

Reserve Bank of Philadelphia real time data bank have been utilized.  M2 data from 1959

through 91:2 are also taken from the Federal Reserve Bank of Philadelphia real time data

bank, vintage November 1991.  Mehra cites Hetzel (1989).  Table AV of Hetzel’s paper

                                                                                                                                                                            
restrictions see Hausman and Taylor (1983).
15 The article indicates that the data are available at the JMCB editorial office.  This is no longer the case.
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contains a quarterly data series for the own rate on M2 from 1946:1 through 1989:2.  This

series is supplemented with eight observations from 89:3 through 91:2 that reflect current

measurement of the own rate on M2.16  Hetzel also indicated that he used data from

Friedman and Schwartz (1970) on M4 to measure the post-1980 concept of M2 for the

years prior to 1959 (p. 25-6).17  Finally, data on the commercial paper rate is from

Banking and Monetary Statistics, 1941-70 and various issues of the Annual Statistical

Digest.  The published estimates from Mehra (1993) Table 1 and estimates from the

reconstructed data set are shown in Table 1.  It is apparent that while the original data set

has not been replicated exactly, the reestimations do not differ in any significant respect

from the published numbers.

In Table 2 the Mehra specification has been modified to impose a common lag

length of one on all of the variables.  In the IV estimation observations at lags 2-4 of

changes in real M2, real GNP and the opportunity cost variable in addition to the

constant, the three dummy variables and the lagged levels of real M2, real GNP and the

opportunity cost variable have been used as instruments.  The purpose of this is

respecification is to facilitate comparisons with the VAR based estimates.  A comparison

of the IV estimates in Tables 1 and 2 reveals that the differences between the OLS and IV

estimates result from the exclusion of the lagged observations on rGNP∆ and

)2( RMR −∆  from the IV specification.  When these lags are included (Table 2) then the

estimated coefficients from the IV regression are almost the same as those from the OLS

regression.  Further, when a uniform lag length is established for all variables the

                                                          
16 We checked the values of the own rate on M2 as currently measured for 88:1-89:2 against those in the
Hetzel table.  The largest discrepancies are no more than several basis points.
17 Hetzel apparently did not chain the Friedman and Schwartz M4 series to the post-1980 M2 series at 59:1.
The two series have been concatenated without chaining in this analysis.
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estimated coefficient on the velocity error correction term becomes insignificant in both

the OLS and IV regressions.

With the exception of the estimated distributed lag coefficients on rGNP∆ , the

same similarities exist between the two estimators when the lag length is extended to two

on all variables (Table 3).  This suggests that the goodness of fit is very high in the first

stage regressions that use the lagged changes as instruments.  When a uniform lag length

of two is set on all three variables and lags of three and four periods of rGNP∆ and

)2( RMR −∆  are used as instruments, the sign of the coefficient on the velocity error

correction term is reversed.

The results of the estimations using the structural VAR identifying restrictions are

considerably different, both statistically and economically.  This can be seen by

comparing the third column of Tables 2 and 3 with either the first or second columns of

those tables.  First, the estimated error correction term on M2 velocity is roughly an order

of magnitude bigger using the IV estimator with covariance restrictions than the estimate

of this term with either OLS or IV with lagged change instruments.  Second, the error

correction coefficient on the opportunity cost variable is not significantly different from

zero using the covariance IV estimator.  This implies that the elasticity of the long-run

demand for real M2 with respect to the opportunity cost variable is not significantly

different from zero.  Third, the covariance IV estimates of the elasticities of the demand

for real M2 with respect to contemporaneous real GNP are substantially greater than

unity. In contrast to the estimates from IV with lagged change instruments that range

from 0.15 to 0.35 in the examples in Tables 1 and 2.  Finally a comparison of the

estimates in Tables 2 and 3 suggests that the results from covariance IV estimator do not
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appear to be very sensitive to the choice the lag length in the models.  In contrast, when

the lag length is increased from one to two, estimates of critical coefficients in the

equation change sign using the IV estimator with lagged change instruments.

One method of evaluating the marginal effect of the alternative choice of

instruments is to construct yet a third IV estimate that combines the two sets of

instruments.  If the additional lagged variables are to be valid instruments, then they must

appear in at least one of the other equations in the data generating process (DGP).  Hence

they should appear in the reduced form DGP.  For purposes of using both lagged

variables and covariance restrictions as instruments, the reduced form VECM is extended

to four lagged changes in all three variables.  When estimating the short-run demand for

real M2 equation, all lag distributions are truncated at lag = 2.  Thus the equation is

overidentified. The comparison of the three estimations is shown in Table 4.  The results

with the combined sets of instruments resemble closely those with the covariance

instruments. The impact income elasticity is large (indeed it is almost identical to the

long-run elasticity) and the impact elasticity of the opportunity cost variable is small in

absolute value, but significantly different from zero.  Finally, the long-run opportunity

cost elasticity in these regressions is also not significantly different from zero.

These results suggest that on the margin, the omitted variables are not particularly

useful instruments.  This can be examined by considering the marginal contribution of the

additional lags to the reduced form VECM.  The computed Chi-squared statistic for the

exclusion of the third and fourth lagged changes of all three variables from all three

reduced form equations is 25.79, which with 3 x 2 x 3 = 18 degrees of freedom has a p

value of .105.  Thus the hypothesis that all of the additional lagged changes can be
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excluded from the reduced form is not rejected.  One possible inference from this is that

none of the additional lagged changes enter significantly into any equation of the

“economic model”.  This hypothesis is consistent with the weak marginal contribution of

these variables to the instrument list.

It is interesting to consider the implied rational polynomial distributed lag

structure for the dynamic demand for real M2 implied by the various estimators.  The

estimated distributed lag coefficients from three estimations are plotted in Figure 1.18

The estimated distributed lag coefficients for both right hand side variables in the short-

run demand for real M2 are almost identical for the two sets of IV estimates.  In contrast,

the OLS estimates are considerably different.  In the case of real GNP, the OLS

coefficients start our relatively small and reach a peak at a two quarter lag.  The IV

coefficients start large and decline monotonically, and become slightly negative after two

quarters.  The opportunity cost coefficients start out essentially the same for all three

estimates, but they approach zero much more rapidly with the IV estimates compared to

the OLS estimates.  The IV coefficients also overshoot zero, while the OLS coefficients

go monotonically to zero after one lag.

Additional dynamic analysis can be constructed to determine the reaction of the

three variables in the system to the permanent (supply) shock, the transitory opportunity

cost shock, and the transitory shock to real balances.  The impulse response functions for

the three variables in the model plus M2 velocity with respect to the three shocks are

plotted in Figures 2-4.  Each graph shows the response function for three specifications of

the dynamic structure of the reduced form VECM.  For the most part there is little

                                                          
18 Mehra’s IV estimation in Table 2, column 2 is not shown because the lag structure is essentially the same
as that of OLS.  The IV estimates with lagged instruments in Table 3 are not shown since the estimated AR
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difference between the estimated response functions for the structure with two lagged

differences and the structure with three lagged differences.  In some cases the estimated

response functions from the structure with only a single lagged change is substantially

different.  This appears to result from an inadequate parameterization of the dynamic

structure of the data generating process.

The response of real output to the permanent (supply) shock is characteristic of

results in the literature.  The response starts out small (in this case much closer to zero

than has been found in other studies), and builds to the steady-state response over a span

of two to four years.  The response of real M2 is similar to that of real output, with the

possibility of some “overshooting” of the steady-state response.  The short-run effect of

this shock on the opportunity cost variable is strongly negative, but dies out over a

horizon of approximately two years.  Finally, since the short-run effect of this shock on

real M2 is larger in absolute value than the short-run impact on real output, the transitory

response of M2 velocity to the “supply” shock is negative.

The impact effect of the opportunity cost shock on opportunity cost is large and

positive and dies out quite slowly.  A close examination of the scale in the response

functions for the other variables in Figure 3 reveals that the opportunity cost shock has

little effect on any of these variables.

The responses to the shock to the demand for real balances are shown in Figure 4.

The response of real M2 starts out positive, builds to a peak after about five quarters and

then dies out very slowly.  The initial response of real output is negative, but smaller in

absolute value than that of real M2.  The response of real output overshoots zero slightly

after about two years, then gradually dies out.  The net effect of these two responses is a

                                                                                                                                                                            
polynomial for this equation has a explosive root and is not invertible.
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strong negative response of M2 velocity that dies out after three to four years.    Since the

elasticity of the demand for real balances is very close to zero, the “LM curve” implied

by these estimates is very close to vertical.  The responses of real M2 and real output are

consistent with a shift to the left of such a “LM curve” in response to a positive transitory

shock to the demand for real balances (or equivalently a negative transitory shock to the

supply of real balances).  The impact effect on the opportunity cost variable is almost

zero in the specifications with two and three lagged changes.  The subsequent short-run

effect on this variable is quite negative.  It does not seem reasonable to presume that the

own rate on M2 responds more strongly or more quickly than the commercial paper rate

to this type of shock.  Hence this pattern does not seem consistent with the prediction

from a shift to the left of an “LM curve” along a negatively sloped “IS curve”.  However,

it is possible that the response of the opportunity cost variable to this shock is measured

very imprecisely.  In any event, there is no evidence here of transitory “liquidity effects”

on the spread of market rates over the own rate on M2.

4. Conclusions

This analysis has demonstrated a straightforward framework for identifying

transitory shocks through exclusion restrictions on error correction coefficients in a

vector error correction model.  The identifying restrictions are from the Bernanke-Sims

“structural VAR” class.  An example of the identification of a short-run demand function

for M2 is presented.  These results are compared the results from identification using

traditional exclusion restrictions on lagged variables.  The conclusion from this analysis

is that the choice of identifying restrictions can be an important factor in the economic

interpretation of the estimates of an ‘economic model’.   In the example shown here,
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Sims’ criticism of the use of exclusion restrictions on distributed lag structures to achieve

identification appears justified.
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Table 1

Alternative Estimations of Mehra Specification 1953:1 – 1991:2
Original Estimates and Reestimated Coefficients

Original Estimates Reestimated Coefficients
Regressor OLS IV

Lagged Inst.a
OLS IV

Lagged Inst.
Constant -0.161 (-1.3) -0.452 (-2.6) -0.163 (-1.3) -0.416 (-2.5)

12 −trM -0.033 (-1.4) -0.087 (-2.6) -0.034 (-1.5) -0.080 (-2.5)

1−trGNP 0.033 (1.4) 0.082 (2.6) 0.033 (1.4) 0.082 (2.5)

1)2( −− tRMR -0.004 (-2.3) -0.007 (-4.2) -0.004 (-2.4) -0.007 (-4.3)

trGNP∆ 0.103 (1.8) 0.39 (1.9) 0.095 (1.7) 0.339 (1.7)

1−∆ trGNP 0.130 (2.2) na 0.110 (1.9) na

12 −∆ trM 0.342 (4.9) 0.407 (5.1) 0.376 (5.3) 0.438 (5.6)

22 −∆ trM 0.120 (1.7) -0.007 (-0.1) 0.101 (1.4) -0.022 (-0.3)

tRMR )2( −∆ -0.011 (-5.6) -0.017 (-4.3) -0.011 (-5.5) -0.017 (-4.2)

1)2( −−∆ tRMR -0.011 (-4.8) na -0.010 (-4.5) na

1CC -0.013 (-2.2) -0.009 (-1.2) -0.014 (-2.4) -0.011 (-1.5)

2CC 0.011 (1.8) 0.011 (1.7) 0.011 (1.9) 0.012 (1.9)

183QD 0.026 (4.7) 0.027 (4.2) 0.026 (4.7) 0.027 (4.3)

ser 0.00554 0.00641 0.0055 0.0062

F 0.13 0.95 0.07 0.98

                                                          
a Instruments are the lagged (log) levels of real M2, real GNP and the opportunity cost measure; 1 to 4
lagged differences in the logs of real GNP and the opportunity cost measure, 1 to 2 lags on the difference in
the log of real M2, the constant and the three dummy variables.
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Table 2
Alternative Estimations of Mehra Specification 1953:1 – 1991:2

Lag Length = 1

Regressor OLS IV
Lagged Inst.a

IV
 Covarianceb

Constant -0.135 (-1.1) -0.162 (-0.9) -1.170 (1.3)

12 −trM         -0.028 (-1.2) -0.033 (-1.0) -.221 (-3.0)

1−trGNP 0.028 (1.2) 0.033 (0.9) .226 (3.0)

1)2( −− tRMR    -0.004 (-2.8) -0.004 (-2.2) -.005 (-1.1)

trGNP∆ 0.101 (1.8) 0.152 (0.6) 1.687 (4.4)

1−∆ trGNP 0.120 (2.1)   0.104 (1.0) -.086 (-0.5)

12 −∆ trM 0.415 (6.4) 0.410 (6.0) .259 (1.5)

tRMR )2( −∆ -0.011 (-5.8) -0.011 (-2.0) -.033 (-4.6)

1)2( −−∆ tRMR -0.010 (-4.3) -0.009 (-3.8) -.004 (-0.6)

1CC -0.014 (-2.4) -0.013 (-1.5) .010 (0.6)

2CC 0.012 (2.1) 0.012 (1.8) .002 (0.1)

183QD 0.026 (4.7) 0.027 (4.7) .020 (1.3)

ser 0.0055   0.0055 .0146

F 0.08 0.05 na

                                                          
a Instruments are the lagged (log) levels of real M2, real GNP and the opportunity cost measure; 1 to 4
lagged differences in the logs of real GNP and the opportunity cost measure, 1 to 2 lags on the difference in
the log of real M2, the constant and the three dummy variables.
b From the reduced form VECM estimated using Johansen’s (1991) FIML estimator,
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Table 3
Alternative Estimations of Mehra Specification 1953:1 – 1991:2

Lag Length = 2

Regressor OLS IV
Lagged Inst.a

IV Covariance/
FIMLb

Constant -0.116 (-0.9) 0.153 (0.5) -0.877 (-2.7)

12 −trM -0.025 (-1.1) 0.026 (0.5) -0.168 (-2.8)

1−trGNP 0.024 (1.0) -0.028 (-0.5) 0.170 (2.8)

1)2( −− tRMR -0.003 (-1.9) -0.005 (-1.6) -0.002 (-0.5)

trGNP∆ 0.085 (1.6) -0.368 (-0.9) 1.402 (4.9)

1−∆ trGNP 0.095 (1.6) 0.350 (1.3) -0.205 (-1.4)

2−∆ trGNP 0.173 (3.1) 0.241 (2.3) 0.077 (0.6)

12 −∆ trM 0.340 (4.5) 0.328 (2.9) 0.263 (1.5)

22 −∆ trM 0.083 (1.2) 0.037 (0.3) 0.014 (0.1)

tRMR )2( −∆ -0.012 (-5.7) -0.026 (-1.4) -0.012 (-2.6)

1)2( −−∆ tRMR -0.013 (-5.4) -0.011 (-2.3) -0.009 (-1.7)

2)2( −−∆ tRMR -0.002 (-1.1) -0.008 (-1.1) -0.001 (-0.2)

1CC -0.013 (-2.3) -0.028 (-1.7) 0.014 (1.0)

2CC 0.008 (1.4) 0.016 (1.4) -0.002 (-0.2)

183QD 0.028 (5.1) 0.028 (3.5) 0.023 (1.9)

ser 0.0053 0.0075 .0122

F 0.38 0.44 na

                                                          
a Instruments are the lagged (log) levels of real M2, real GNP and the opportunity cost measure; 1 to 4
lagged differences in the logs of these three variables, the constant and the three dummy variables.
b From the reduced form VECM estimated using Johansen’s (1991) FIML estimator,
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Table 4
Alternative  Estimations of Mehra Specification 1953:1 – 1991:2

Lag Length = 2

Regressor IV
Covariancea

IV Combined
Instrument sets

Constant -0.877 (-2.7) -0.699 (-3.1)

12 −trM -0.168 (-2.8) -0.134 (-3.1)

1−trGNP 0.170 (2.8) 0.134 (3.9)

1)2( −− tRMR -0.002 (-0.5) -0.002 (-0.8)

trGNP∆ 1.402 (4.9) 1.073 (5.34)

1−∆ trGNP -0.205 (-1.4) -0.131 (-1.2)

2−∆ trGNP 0.077 (0.6) 0.100 (1.0)

12 −∆ trM 0.263 (1.5) 0.283 (2.0)

22 −∆ trM 0.014 (0.1) 0.031 (0.2)

tRMR )2( −∆ -0.012 (-2.6) -0.012 (-3.2)

1)2( −−∆ tRMR -0.009 (-1.7) -0.010 (-2.4)

2)2( −−∆ tRMR -0.001 (-0.2) -0.001 (-0.3)

1CC 0.014 (1.0) 0.007 (0.7)

2CC -0.002 (-0.2) 0.001 (.04)

183QD 0.023 (1.9) 0.024 (2.4)

ser .0122 .0098

F na na

                                                          
a From the reduced form VECM estimated using Johansen’s (1991) FIML estimator,
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Figure 1
Alternative Estimators
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Figure 2
Impulse Response Functions
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Figure 3
Impulse Response Functions
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Figure 4
Impulse Response Functions
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