656,194 research outputs found
Error-Correcting Codes for Automatic Control
Systems with automatic feedback control may consist of several remote devices, connected only by unreliable communication channels. It is necessary in these conditions to have a method for accurate, real-time state estimation in the presence of channel noise. This problem is addressed, for the case of polynomial-growth-rate state spaces, through a new type of error-correcting code that is online and computationally efficient. This solution establishes a constructive analog, for some applications in estimation and control, of the Shannon coding theorem
Fast decoding techniques for extended single-and-double-error-correcting Reed Solomon codes
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. For example, some 256K-bit dynamic random access memories are organized as 32K x 8 bit-bytes. Byte-oriented codes such as Reed Solomon (RS) codes provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special high speed decoding techniques for extended single and double error correcting RS codes. These techniques are designed to find the error locations and the error values directly from the syndrome without having to form the error locator polynomial and solve for its roots
Error control for reliable digital data transmission and storage systems
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. In this paper we present some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative alorithm to find the error locator polynomial. Two codes are considered: (1) a d sub min = 4 single-byte-error-correcting (SBEC), double-byte-error-detecting (DBED) RS code; and (2) a d sub min = 6 double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS code
Error Correcting Codes for Distributed Control
The problem of stabilizing an unstable plant over a noisy communication link
is an increasingly important one that arises in applications of networked
control systems. Although the work of Schulman and Sahai over the past two
decades, and their development of the notions of "tree codes"\phantom{} and
"anytime capacity", provides the theoretical framework for studying such
problems, there has been scant practical progress in this area because explicit
constructions of tree codes with efficient encoding and decoding did not exist.
To stabilize an unstable plant driven by bounded noise over a noisy channel one
needs real-time encoding and real-time decoding and a reliability which
increases exponentially with decoding delay, which is what tree codes
guarantee. We prove that linear tree codes occur with high probability and, for
erasure channels, give an explicit construction with an expected decoding
complexity that is constant per time instant. We give novel sufficient
conditions on the rate and reliability required of the tree codes to stabilize
vector plants and argue that they are asymptotically tight. This work takes an
important step towards controlling plants over noisy channels, and we
demonstrate the efficacy of the method through several examples.Comment: 39 page
Coding for reliable satellite communications
This research project was set up to study various kinds of coding techniques for error control in satellite and space communications for NASA Goddard Space Flight Center. During the project period, researchers investigated the following areas: (1) decoding of Reed-Solomon codes in terms of dual basis; (2) concatenated and cascaded error control coding schemes for satellite and space communications; (3) use of hybrid coding schemes (error correction and detection incorporated with retransmission) to improve system reliability and throughput in satellite communications; (4) good codes for simultaneous error correction and error detection, and (5) error control techniques for ring and star networks
New Parameters of Linear Codes Expressing Security Performance of Universal Secure Network Coding
The universal secure network coding presented by Silva et al. realizes secure
and reliable transmission of a secret message over any underlying network code,
by using maximum rank distance codes. Inspired by their result, this paper
considers the secure network coding based on arbitrary linear codes, and
investigates its security performance and error correction capability that are
guaranteed independently of the underlying network code. The security
performance and error correction capability are said to be universal when they
are independent of underlying network codes. This paper introduces new code
parameters, the relative dimension/intersection profile (RDIP) and the relative
generalized rank weight (RGRW) of linear codes. We reveal that the universal
security performance and universal error correction capability of secure
network coding are expressed in terms of the RDIP and RGRW of linear codes. The
security and error correction of existing schemes are also analyzed as
applications of the RDIP and RGRW.Comment: IEEEtran.cls, 8 pages, no figure. To appear in Proc. 50th Annual
Allerton Conference on Communication, Control, and Computing (Allerton 2012).
Version 2 added an exact expression of the universal error correction
capability in terms of the relative generalized rank weigh
A cascaded coding scheme for error control and its performance analysis
A coding scheme is investigated for error control in data communication systems. The scheme is obtained by cascading two error correcting codes, called the inner and outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon <1/2. It is shown that if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging form high rates to very low rates and Reed-Solomon codes as inner codes are considered, and their error probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates. Several example schemes are being considered by NASA for satellite and spacecraft down link error control
- …
