28,222 research outputs found
Improved Precision and Efficiency of a Modified ORG0020 Dynamic Respiration Test Setup for Compost Stability Assessment
The ORG0020 dynamic respiration test is effective at distinguishing source segregated organic waste derived composts across a wide range of stabilities when compared to other standard tests; however, using the original diaphragm pump and manifold setup, the test is affected by variability in flow rate with time and across sample replicate vessels. Here, we demonstrate the use of a multichannel peristaltic pump to deliver a more consistent air flow to individual vessels. Using finished and unfinished industry compost samples from different sites with varying stabilities, we provide evidence of greater precision of the modified setup compared to the original. Furthermore, the reduced need for air flow adjustment resulted in improved running cost efficiency with less labour demand. Analysis of compost sample oxygen demand supports the current test air flow rate of 25–75 mL min−1, although the improved air flow control will enable future narrowing of the acceptable range for better inter-laboratory performance
The biological activity of soluble antigen-antibody complexes: II. Physical properties of soluble complexes having skin-irritating activity
Previous work by Germuth and McKinnon (1), Trapani et al. (2), and ourselves (3) has established the fact that soluble antigen-antibody complexes formed in excess antigen can, (a) induce symptoms similar to anaphylaxis, (b) cause contraction of isolated smooth muscle from normal guinea pigs, and (c) increase the permeability of skin capillaries in a manner similar to that obtained in passive cutaneous anaphylaxis. These findings immediately raise many questions as to the fundamental mechanisms involved. For example, is the free antigen playing some role; is the toxicity dependent upon some change in the molecular structure of either antigen or antibody upon combination; is the complex itself toxic without any change in the molecular structure of the components; is the antigen-antibody ratio important; and, is complement involved? The work reported here involves a study of the possible role of free antigen and the nature of the complex. Some study was also made of untreated and decomplemented antiserums and, although there was no difference, this cannot rule out the possible participation of the test animal's (guinea pig's) own complement
Intercomparison of soil pore water extraction methods for stable isotope analysis
Funded by NSERC Discovery Grant U.S. Forest Service U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies OfficePeer reviewedPostprin
Scaling and super-universality in the coarsening dynamics of the 3d random field Ising model
We study the coarsening dynamics of the three-dimensional random field Ising
model using Monte Carlo numerical simulations. We test the dynamic scaling and
super-scaling properties of global and local two-time observables. We treat in
parallel the three-dimensional Edward-Anderson spin-glass and we recall results
on Lennard-Jones mixtures and colloidal suspensions to highlight the common and
different out of equilibrium properties of these glassy systems.Comment: 18 pages, 21 figure
Recommended from our members
Extreme enrichment in atmospheric 15N15N.
Molecular nitrogen (N2) comprises three-quarters of Earth's atmosphere and significant portions of other planetary atmospheres. We report a 19 per mil (‰) excess of 15N15N in air relative to a random distribution of nitrogen isotopes, an enrichment that is 10 times larger than what isotopic equilibration in the atmosphere allows. Biological experiments show that the main sources and sinks of N2 yield much smaller proportions of 15N15N in N2. Electrical discharge experiments, however, establish 15N15N excesses of up to +23‰. We argue that 15N15N accumulates in the atmosphere because of gas-phase chemistry in the thermosphere (>100 km altitude) on time scales comparable to those of biological cycling. The atmospheric 15N15N excess therefore reflects a planetary-scale balance of biogeochemical and atmospheric nitrogen chemistry, one that may also exist on other planets
Body water compartments during bed rest: Evaluation of analytical methods
Nine healthy young men were studied to determine the reproducibility and interchangeability of the use of radio-iodinated human serum albumin and Evans Blue dye for estimating plasma volume, sodium bromide for extracellular fluid volume, and deuterium oxide for total body water volume. All subjects were tested in a semibasal condition and allowed to rest for at least 30 min. after arriving at the laboratory. The results indicate that there was uniform distribution of I131 and Evans Blue dye 10 min. after injection and of NaBr and D2O 3 hours after oral ingestion; the buildup of residual tracer did not interfere appreciably with the measurement of either or Evans Blue spaces when they are administered at equal intervals, and the buildup of background tracer after ingestion of NaBr and D2O once per week for three consecutive weeks did not affect the accuracy of the measurement. It was found that I131 and Evans Blue may be used interchangeably for estimating plasma volume; for estimating bromide and D2O spaces, one 3-hour equilibrium blood sample gives results similar to the extrapolation of multiple samples
Use of shuttle for life sciences
The use of the space shuttle in carrying out biological and medical research programs, with emphasis on the sortie module, is examined. Detailed descriptions are given of the goals of space life science disciplines, how the sortie can meet these goals, and what shuttle design features are necessary for a viable biological and medical experiment program. Conclusions show that the space shuttle sortie module is capable of accommodating all biological experiments contemplated at this time except for those involving large specimens or large populations of small animals; however, these experiments can be done with a specially designed module. It was also found that at least two weeks is required to do a meaningful survey of biological effects
Homologous Pairing between Long DNA Double Helices
Molecular recognition between two double stranded (ds) DNA with homologous
sequences may not seem compatible with the B-DNA structure because the sequence
information is hidden when it is used for joining the two strands.
Nevertheless, it has to be invoked to account for various biological data.
Using quantum chemistry, molecular mechanics, and hints from recent genetics
experiments I show here that direct recognition between homologous dsDNA is
possible through formation of short quadruplexes due to direct complementary
hydrogen bonding of major groove surfaces in parallel alignment. The
constraints imposed by the predicted structures of the recognition units
determine the mechanism of complexation between long dsDNA. This mechanism and
concomitant predictions agree with available experimental data and shed light
upon the sequence effects and the possible involvement of topoisomerase II in
the recognition.Comment: 10 pages, 7 figures, Includes Supplemental Material. To appear in
Phys. Rev. Let
- …
